
NASA Contractor Report 195383 ?_IoV

('. l?;

Discrete-Layer Piezoelectric Plate and Shell
Models for Active Tip-Clearance Control

P.R. Heyliger, G. Ramirez, and K.C. Pei
Colorado State University

Fort Collins, Colorado

October 1994

Prepared for
Lewis Research Center

Under Grant NAG3-1520

National Aeronautics and

Space Administration

(NASA-CR-I?5383) DISCRETE-LAYER

PIEZOELECTRIC PLATE AND SHELL

MOOELS FOR ACTIVE TIP-CLEARANCE

CONTROL Final Report (Co|orado

State Univ.) iT0 p

G3139

N95-14417

Unclas

0030107





TABLE OF CONTENTS

1. INTRODUCTION ......................................................................... 1

Project Objectives ......................................................................... 1

Structure of Report ........................................................................ 1

2. BACKGROUND ........................................................................... 3

Literature Review ......................................................................... 3

Linear Theory of Piezoelectricity ................. .......................................... 8

3. SEMI-ANALYTIC SOLUTIONS .......................................................... 13

Governing Equations ..................................................................... 13

Finite Element Approximation ............................................................ 16

4. THE PLATE ELEMENT ................................................................. 21

Governing Equations ..................................................................... 21

Discrete-Layer Approximations ........................................................... 25
Transformation Matrices .................................................................. 31

5. THE SHELL ELEMENT .................................................................. 34

Variational Formulation in Cylindrical Coordinates ........................................ 34
Variational Formulation in Curvilinear Coordinates ....................................... 36

Discrete-Layer Theories ................................................................... 40

Dynamic Analysis ........................................................................ 52

Computational Models ................................................................... 55

6. EXACT SOLUTIONS ..................................................................... 56

Introduction .............................................................................. 56

Exact Solution ........................................................................... 57

7. NUMERICAL EXAMPLES AND RESULTS .............................................. 68

The Plate Element ................................... . ................................... 68

Semi-Analytic Solutions .................................................................. 76

Exact Solution ........................................................................... 82

8. SUMMARY AND FUTURE WORK ...................................................... 91

COMPILATION OF FIGURES .............................................................. 93

REFERENCES ............................................................................. 155

APPENDIX ................................................................................ 158



ACKNOWLEDGEMENT

The study that yielded the developments and results presented in this report was sponsored by

a grant from NASA-Lewis Research Center (NAG3-1520). The authors gratefully acknowledge this
support and that of the grant monitor, Dale Hopkins, and the technical monitor, Dhnitris Saravanos.



1. INTRODUCTION

Project Objectives

The primary objectives of this research project, as stated in the initial proposal by

the first author of this report, were to develop the following computational tools for use

in active tip-clearance control:

• A discrete-layer plate theory (both semi-analytic and finite element approximations)

for laminated composites structures with embedded piezoelectric layers.

• A 3-D general discrete-layer element generated in curvilinear coordinates with con-

stant out-of-plane displacement components for modeling laminated composite piezo-

electric shells with curved surfaces. This tool will be used to represent the general

geometries of the engine blades and the casing.

This report describes the theoretical developments and implementation of these models as

well as additional work completed as part of this study. Conclusions regarding the nature

and performance of these models are presented, and additional testing and applications

are Suggested.

Structure of Report

The primary components of this research were the theoretical development and intro-

duction of finite element models and semi-analytic solutions using discrete-layer approxi-

mations for the analysis of laminated piezoelectric plates and shells. These models form

the basic thrust and results of the present study. However, as part of this development,

it was found necessary to develop an additional component as both a check and a com-

putational alternative for the plate geometry. This additional component involved the

development of exact solutions for the static and dynamic behavior of simply-supported

laminated piezoelectric plates. Although not included in the original proposal, the de-

velopment of the exact solutions was critical to the successful development of the plate

element because there are effectively no other results in the literature for laminated piezo-

electric plates other than very simple approximate models. The exact solutions filled a

needed gap in the understanding of these laminates, and because their development was

completed under the auspices of this project, the results are included here.

The following chapter gives a brief review of the literature to describe the current state-

of-the-art in the field of control using active materials, with emphasis given to piezoelectric



materials. Alsogiven in this chapteris anoverviewof the linear theory of piezoelectricity

and the governingequations to be usedin the following chapters. In the third chap-

ter, semi-analytic solutionsdevelopedfor the plate geometry are described. The fourth

and fifth chaptersgive the developmentof the plate and shell elements,respectively,for

laminated piezoelectricsolids using the discrete-layertheory. The sixth chapter details

the developmentof the exact solutions for the static and dynamic behavior of simply-

supported piezoelectriclaminates. The seventhchapter containsrepresentativeexample

problems for the modelsdevelopedin the previous chapters. A discussionof potential

future work and summaryare givenin the eighth and final chapter.
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2. BACKGROUND

This section includesa review of the literature regardingboth discrete-layertheories

and so-calledsmart structuresasthesetopicsapply to the presentstudy. The fundamental

equationsrelated to the linear theoryof piezoelectricityarealso included in this section,

and are provided asa usefulfoundation for the chaptersthat follow.

Literature Review

_Piezoelectricity

In 1880, Pierre and Jacques Curie discovered that the electrical charges on certain

dielectric crystal could be produced by impressing mechanical stress. Later in 1881,

Hankle named this direct and its converse effect "piezoelectricity". With the knowledge

of solid mechanics and electricity, the mathematical foundations ali(l governing equations

were available and used in the original work of Voight [63]. In additiolJ to this volume, two

other classical works of Mason [64] and Cady [66], are cited frequently in latter studies of

piezoelectricity. Both works gave a special attention in the physical properties of crystals,

as well as practical applications.

Several works published in 1960's initiated the numerical solution of problems in-

volving piezoelectric solids. In 1967, Eer Nisse introduced the variational calculus and

a Ritz-approximation for analyzing electroelastic vibration problems [5, 6]. In his work,

variational formulas were derived for the equations of motion of piezoelectric cylinders

and were applie d to find the resonant frequencies of thick discs. This application gave

a beginning for latter studies using numerical approximation. The monograph of Tier-

sten [67], provides a comprehensive treatment and application of the linear theory of

piezoelectricity. In this book, a systematic derivation of the governing equations of linear

piezoelectricity were given, and results of homogeneous plate vibration problems were

shown. In later works dealing with piezoelectric vibrations, thiu monograph is without

question the most oft-cited reference.

On the basis of the works of Eer Nisse [5, 6], Holland [7] presented an application to

rectilinear geometry. With specified trial functions, the resonant properties of piezoelec-

tric ceramic rectangular parallelepipeds were discussed, as well ,as several mode shapes

were contoured. To avoid the limitation of using Ritz-approximation under complicated

boundary conditions, Allik and Hughes [9] introduced a finite elemcllt formulation for the



equationsof piezoelectricity. A electroelastictetrahedral elementwasalso developedin

this work but without further application and numericalresults. This work began the ef-

forts of using modern computational techniques to represent the behavior of piezoelectric

solids.

Several studies have appeared using finite element approximations to the equations

of linear piezoelectricity. Kagawa and Yamabuchi [14] developed a computer program to

solve the axisymmetric vibrations of a piezoelectric circular rod of finite length. Later in

the 1980's, several piezoelectric structures were analyzed by Naillon et al. [20], as well

as three-dimensional structures by Ostergaard and Pawlak [25]. Being different from Eer

Nisse's approximation [6], Kunkel et al. [38] used the finite element method to find the

natural vibrational mode of axially symmetric piezoelectric ceramic di._ks.

Three volumes, which are not referred here but have been cited frequently in recent

studies, are the works of Nye [6S], Bottom [71] and Zelenka [72]. These books provide

details and more recent information on the properties of (quartz) crystals. In Ze[enka's

book, Piezoelectric resonators and non-linear properties of crystal a,re an area of focus.

Theories of Thick Laminates

The classical laminated plate theory (CLPT), which is a direct extension of classical

plate theory (CPT), has been used to solve many composite plate problems for years.

Because the assumed Kirchhoff hypothesis remains in CLPT, the thickness effect, which

is known to cause poor results when analyzing thick plates with the use of CPT, similarly

occurs when using CLPT to analyze thick laminates. According to the literature reviews

of several studies [32, 43, 44], the initial work to take into account the thickness effect

could be credited to Basset [1] in 1890. After this work, several displacement-based

refined theories developed by Hidebrand, Reissner and Thomas [2], as well as Mindlin

[3], were extremely useful to later studies dealing with the transverse stresses in plates.

Another commonly used book is that of Timoshenko [65], which gives development of

a generalized plate theory and some elasticity solutions for specific plate geometries. In

many later studies to refine the CLPT, the above works are frequently cited.

In Pagano's works [10, 11], limitations of the CLPT for laminated elastic plates were

investigated. Solutions of several specific composite problems using CLPT were com-

pared with the corresponding elasticity solutions (i.e. exact solutions). The conclusions

pointed out the undesirable effects and limitations of CLPT, and motivated later re-
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finment. To deal with the shear deformationand rotatory inertia effects in arbitrarily

laminated anisotropicplates, the first-order sheardeformationplate theory (FSDT) [2,3]

was generalizedby Yang et al. [4]. In this generalizedFSDT, the normals to the mid-

planebeforedeformationremainsstraight (i.e. first-order formulation) but not necessarily

normal to the mid-planeafter deformation.However,a correction to transversestiffness

was required to satisfy the boundaryconditions (i.e. the zero transverseshearstresson

the top and bottom surfacesof plate). Severalapplications using this theory in bending,

vibration and transient analyseswereshownby Whitney et al. [12] and Reddy [17, 19].

Following the generalizedFSDT, higherorder formulations weregiven to obtain a better

description for thick laminates. A variationally consistent high order shear deformation

laminate plate theory wasintroducedby Reddy[22,27]. Using this theory, the correction

neededin the FSDT wasnot required.Later, for reasonsof efficiency,Putcha and Reddy

developeda mixed shearflexible finite element[27] to apply the hig], order theories. An

analysisof stability and natural vibration for laminated plates werealso represented.In

addition to Reddy'sstudies,Khdeir presentedseveralapplicatiolis usiaghis refinedshear

deformation theory [40].Resultsavailablein the literature have beenadapted frequently •

for comparisonsin many later studies.

Discrete-layer Theories

Several works employed to develop so-called discrete-layer theories are specially intro-

duced here for their usefulness in this research. The most initial work that use a layerwise

displacement theory to analyze layered piezoelectric plates and layered anisotropic plates

could be credited to Pauley [13] in 1974. In his dissertation, a layer-wise analysis was

used to study the free vibration characteristics of infinite lamimm:'d piezoelectric plates

using finite element thickness approximations. However, the analysis was limited under a

condition of plane strain. Even though this work was a precursor to later development of

discrete-layer theories and research in laminated piezoelectric structures, no later studies

have cited this effort.

In the work of Reddy [32], a general two-dimensional shear deformation theory of

laminate plates (GLPT) was represented. Based on GLPT, a desired degree of approxi-

mation of the displacements through the laminate thickness can be given. Additionally,

this work indicated that the GLPT could represent a generalized form of many other

laminate theories. The CLPT, the generalized FSDT, the higher order theory [22], and
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severalother refined laminate theoriescan be consideredas special casesdeducedfrom

GLPT. The discrete-layertheoriesare alsoextendedform the GLPT.

After GLPT was developed, Reddy et al. [43, 44] presented several applications and

detailed discussion. In [43], a plate bending element was developed using GLPT. The

accuracy of using this element was also evaluated by comparison with the exact solutions

of the generalized plate theory [65] and 3D-elasticity solutions. When using the bending

element, a layer-wise description of the inplane displacements and stresses of laminate

can be given, and an improved approximation to the transverse shear deformation was

obtained. Results of several examples showed that the thickness effect was effectively

eliminated. Almost at the same time, another work [44] represented the exact analytic

solutions of GLPT in two cases, cylindrical bending and simple ._Ul_port plate. By com-

paring with the 3D-elasticity solutions, this work confirmed that GLPT allowed accurate

determination of interlaminar stresses.

In the work of Robbins and Reddy [53], the GLPT was adapted to laminated piezo-

electric beams. This could be the first work that involved the GLPT into the analysis of

the smart material. Four different displacement-based finite elemettt models, which were

derived from GLPT, were repr_ented with numerical results. However, the piezoelectric

effect was only modeled using an induced strain rather than the equatiorl of piezoelectric-

ity.

Finally, the recent work of Heyliger and Saravanos [59, 62] represented discrete-layer

theories that can deal with the thick.piezoelectric laminates. The kinematic assumptions

were based on the GLPT. To describe the in-plane performance of plates or beams, piece-

wise linear variations of the components were used through the composite thickness. In

addition, finite element and global/Ritz approximation in plane of laminate were involved

to solve several test problems.

Intelligent Structures And Piezoelectric Laminate Theories

In this section, the primary characteristics of piezoelectric beam, plate, and shell

theories are introduced.

Compared with the use of piezoelectrics in transducer applications, the study of dis-

tributed piezoelectric actuators for all solids is quite recent, with most papers appearing

after 1985. The work of Bailey and Hubbard [23] may be the first that introduced dis-

tributed piezoelectric polymers as actuators to control the bending vibration of cantilever



beams. Fanson and Chen [28, 29] also demonstrated that the use of 13iczoelectric materials

as sensors/actuators in beam vibration control was feasible. The passive structure ele-

ment for the control of large space structures can also be replaced by piezoelectric active

members.

Later, Crawley and Luis [30] presented an analytic and experimental development of

one-dimensional piezoelectric elements. These elements can be placed either on the sur-

face or embedded within structural laminated beams, and function as actuators to excite

the steady-state resonant vibrations in the cantilevered beams. The given conclusion em-

phasized that the existence of the embedded actuktors may not affect the elastic modular

of the composite structures, but would reduce the ultimate strength of the laminate by

20%. Finally, the work of Robbins and Reddy [53] is repeated here for their analysis of

simulated piezoelectric laminated beams.

Beginning in 1987, a series of publications by Lee et al. [39, 8-1.4T] initiated efforts

to develop theoretical models for bending and torsional control il_ lalniuated piezoelc3ctric

plates. In [39], Lee and Moon presented a set of piezopolymer devices foL' the model control

of piezoelectric laminates. Experimental results were followed and used to compare with

the theoretical predictions. The latter work by Lee [84] introduced in detail the governing

equations for piezoelectric laminate plates, as well as the reciproc_Li i'elationships of the

piezoelectric sensor/actuator. The assumptions of CLPT were involved because only

slender plates were considered.

Wang and Rogers [52] also used the assumptions of CLPT to mude] laminated plates

with spatially distributed piezoelectric actuator patches. Using the Heaviside function

that corresponding to the inplane location of patches, the strain induced by the actuators

was represented. In addition, the equivalent external forces induced by the piezoceramic

patches under some voltage field can be determined upon the assumption of free constraint

for expansion or contraction of the patches.

In the work of Heyliger and Saravanos [59], discrete-layer theories were developed

to analyze the laminated composite beams and plates which contain active piezoelectric

layers or patches. The coupled relationship between the elastic and electric variables were

explicitly represented in the governing equations. Both the static aud dynamic behaviors

were also considered. Later, Heyliger and Brooks [60] derived the exact solution for

piezoelectric laminates in the two-dimensional configuration of cylilldrical bending. These

results provided useful information to evaluate the developed or future piezoelectric plate

*.-.7
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theories.

Development of piezoelectric shell theories were initiated by a number of Russian

authors, whose efforst are summarized in the outstanding monograph of Kudrayavstev

and Parton. Yet only recently have these been extended for active control problems.

In 1989, Tzou et al. presented a numbers of works regarding piezoelectric shell theory

[42, 49, 51, 55]. In [42], a laminated thin shell with piezoelectric layers was evaluated.

The governing equations of the dynamic state were derived based oll Love's hypothesis -

and Hamilton's principle. Later, Tzou [49] introduced a piezoelectric element to analyze

the distributed sensing and active vibration control of flexible plates and shells. The finite

element formulation was also given. However, only a zero-curvature shell problem was

demonstrated. In [51], Tzou and Tseng developed a "thin" piezoelectric solid element with

the internal degrees of freedom. This element was used in the fillite element formulations

to analyze the piezoelectric shell. In 1991, Tzou and Zhong [55] dev('loped electromechanic

equations of motion of generic piezoelectric shell using HamiltoLl's pL'ilLcip[e and linear

piezoelectricity. Numerical results using finite difference technique were represented, as

well as a-comparison with the experimental results.

In addition to the works of Tzou et al., Lammering [54] developed a shell deformation

finite element to analyze a shell structure with surface coated piezoelectric layers. In this

work, a shear deformation elastic shell theory of the Reissner-Milidlin type was used to

develop the finite element formulation.

The Linear Theory of Piezoelectricity

To begin the analysis for laminated structures with embedded piezoelectric layers, the

material properties and governing equations for piezoelectric media must to be defined.

The behavior of piezoelectric material used in the composite is assumed to be linear. A

brief introduction to the material behavior and related equations is given below.

Behavior of Piezoelectric Material

In 1880, the Curie brothers discovered the piezoelectric effect oa certain crystalline

materials. When mechanical stresses are applied on a dielectric crystal, surface electric

charges are instantaneously created. The converse effect is that the presence of an electric

field results in changing the shape of the crystal. More than a hundred ferroelectric ma-

terials with the piezoelectric effect have been found. Conventional piezoelectric materials
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are crystalline or polycrystalline style. Therefore, they are mostly produced in the form

of ceramics or crystals. The brittle properity leads to disadvantages in usage.

In 1969, a strong piezoelectric effect in PVDF, polyvinylidene Huoride polymer, was

discovered by Kawai [84, 16] . PVDF-type materials are flexible. The polymeric properi-

ties are very different to the properities of the conventional piezoelectric materials. They

can be produced and formed into thin-film sheets that are easy to cut or shape for com-

plex configurations. Because of the convenience, structures with highly distributed sen-

sors/actuators (intelligent structure) can be constructed.

In laminated structures, the embedded or coated piezoelectric layers function as dis-

tributed sensors and actuators. When applied forces result in strains within the structure,

the surface charges on each layer can be collected through a surfat:_' (-Icctrode (i.e. it can

be coated on the layer) to an outside detector. The deformatioJi t'_r_ therefore be mea-

sured. Conversely, if a voltage field is linked to a certain piezoelectt'ic layer, the shape

change within that layer can be used to actuate the structure. The sulface electrode_

which covers the piezoelectric layer, can be placed at any de_ir_:,l lLJcation. Oldy the

portion of the piezoelectric layer covered by the electrode can initiate the effect.

In Figure 1, a piezoelectric film with covered electrodes, and th(e poling and rolling

(stretching) directions are shown. Figure 2 presents three possible deibvmations of piezo-

electric laminated plate when applying an electric field. Both figures are taken from the

work of Lee [84].

Equations to Describe the Piezoelectric Medium

To describe the behavior of a piezoelectric medium, there are five mechanical and

electromagnetic relations (or equations) involved :

(I) the stress equations of motion/equilibrium,

(2) the strain - displacement relations,

(3} the charge equation of electrostatics,

(4) the electric field - electric potential relations, and

(5} the constitutive equations.

These are given sequentially as follows:

= p ij (fj = o) ( t}

Here ri.i are stress components, p is material density, fii are cotIHJ,,:tclds of accelct'ation,



and the body forces fj are assumed to be zero.

1

&j = _(u_,j + uj,_)

Here Sij are strain components and ul are components of displacement.

(2)

Di,i=O (3)

Here Di are the components of the electric displacement, or electric flux dens-ity, along

the i direction.

Ek = -¢,k (4)

Here Ek are electric field along k direction and ¢ is electrostatic putentia[.

The piezoelectric constitutive equations present the relatior_s al_ol,g :

(1) the stress field, the strain field, and the electric field;

(2) the electric displacement, the strain field, and the electric field.

They can be written as follows.

rij = CijmSkt - ekljEk (5)

Di = eiktSkt -'I-6ikEk (6)

The elements Cijkl are elastic constants, ekij are piezoelectric coefficients, and ei_ are

dielectric constants. In this research, the constitutive relations of alJ orthotropic layer off-

axis are followed. The elastic stiffness matrix and the matrix of pi_:,zoelectric coefficients

are given as

Cll 612 C13 0 0 C16

612 C22 C23 0 0 626

C13 C23 C_ 0 0 C38
0 0 0 C44 C45 0
0 0 0 Cs4 Cs5 0

Cls C2_ C36 0 0 C66

(7)

and

0 0 0 e14 els 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36

(8)

The indicial notations Cijla change into C,_, also ekij change into e._, (a, b = 1,2,..., 6,

and k = 1, 2, 3).
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The total set of 22 equations in 22 variables can fully define a given piezoelectric

medium. Several additional equations related to linear piezoelectricity are briefly intro-

duced here.

The equation to describe the total surface charges q(t) at time t, which are collected

by a surface electrode and sensed by the outside detector, is given by

q(t) = fs D . ndS= fs DinidS (9)

Here n is the normal vector of the small surface area dS, and D is the electric displacement

vector in the piezoelectric medium. This equation represents that the D passing through

the surface with electrode are collected. The internal energy function can be written as

[
1 _eiiEiEi)d VU = jv(_Cijk_SUSkt +

The first item of right hand side is the strain energy per unit volume.

electrostatic energy density.

(lO)

Tile second is

Finally, the electric enthalpy H per unit volume is defined

as

H(S, E) = U-E.D=U-EiDi

1 1
= xCijktSijSkt - ekijEkSij - ---E Ej (11)

The eIectric enthalpy will be used in Hamilton's principle in the next section.

Hamilton's Principle for Linear Piezoelectricity

In this section, the generalized Hamilton's principle for a piezoelectric medium is pre-

sented. The variational formulations developed in subsequent chapters depend critically

on this expression. For the plate geometry, this expression will be given in terms of rect-

angular Cartesian coordinates. For the shell, the variational formulation will be developed

in both the cylindrical and the curvilinear coordinates.

In this research, the generalized Hamilton's principle is used as

_ti' 6(E - U)dt + _' 6Wdt = 0 (12)

1 .IC = -_pu. fadV

6w= fv(f.6u+ D))av+ £1t. u- e 9), S

Where

(13)

(14)
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Here K: is the kinetic energy of the system, U is the internal energy of the piezoelectric

medium, and 6Y_', virtual work done to the system. The four items on the right hand

side of equation 14 represent the virtual work done by (I) body force in a virtual dis-

placement, (,_) variation of electric field in a electric displacement, as well as variation

of electric displacement in a electric field, (3) the prescribed surface tractions in a vir-

tual displacement on medium surface, and (_) the prescribed surface charge _ in a small

variation of electrical potential ¢.

Since the applied electric field E and electric displacement D are interdependent, the

system is not conservative. The body force f is assumed to be zero here. The expression

of equation 14 is the governing equation used in this research, and is written as

f,]'dt fv l .. ,,

Here H(Skt, Ek) is the electric enthalpy, which replaces the terms of internal energy and

E • D in equation 14. The value will not be changed due to the coordinate transformation.

The variational form of H is expressed as

8H = 8(U-E.D)=SU-$(E.D)

= Ci.iktSijSSkt - ekiiEk,_Sij - ekij6EkSi.i -- gijF--,i_E.i (16)

These equations will be used extensively in later chapters. Depending on the problem

geometry and coordinate system used, the form of these equations will be different and

are detailed for each case in the following chapters.

12



3. SEMI-ANALYTIC SOLUTIONS

This sectiondetailsa discussionof what aretermedsemi-analyticsolutions tbr simply-

supported laminated piezoelectricplates.This work wasan extensionof work completed

by the principal investigator and the technical monitor of this researchproject (DAS).

The phrase "semi-analytic" denotes the fact that use of Navier-type displacement fields

will identically satisfy the in-plane requirements of a simply supported plate for the exact

solution of the equations of linear piezoelectricity. In this case, as for the exact solution

included in a later chapter, the problem effectively becomes one-dimensional.

The new and major thrust of this section is to detail 1) the relative accuracy of the

two major out-of-plane displacement approximations used in prevk, l,s work in comparison

with exact solutions, and 2) description of an alternative displ_tcement field that was

found necessary to accurately model piezoelectric plates. This field uses piecewise linear

variation of the out-of-plane displacement components that are diff_='re_t than those for the

in-plane and potential components. This is discussed to some ext_:.,t iH the chapters on

the plate and shell elements, but is included here because it wa_ [by this class of problem

that a preliminary numerical algorithm has been completed and re._ults computed.

Governing Equations

Geometry

The geometrical configuration of the laminate is such that the thickness dimension of

the laminate coincides with the z-direction, with the lengths of the plate in the x and

y directions denoted as L_ and Lu, respectively. The general problem considered in this

study is to determine the behavior of the elastic and electric field components throughout

the laminate under an applied mechanical or electrical loading. Each layer of the laminate

can be composed of a purely elastic, piezoelectric, or conducting |_a.terial. The forcing

function is introduced through either an applied surface displacement, traction, potential,

or electric charge.

Variational Formulation

A single piezoelectric layer has the constitutive equations given by [67]

13



Hereaq are the components of the stress tensor, Cij are the elastic stiffness components,

Sj are the components of infinitesimal strain, e_i are the piezoelectric coefficients, Ei are

the components of the electric field, Di are the components of the electric displacement,

and eq are the dielectric constants. The poling direction in this study is coincident with

the x3 or z axis.

The strain-displacement relations are given by

s,j = \Ozj + Ox ] (Is)

Here Sii are the components of the infinitesimal stain tensor and u, r_.prc_sent tile displace-

ment components. To be consistent with equation 17, the conventional notation for the

strain indices has been used, i.e. $11 = Sx, $23 = $4, etc. The electric field components

Ei are related to the electrostatic potential ¢ using the relation

0¢
Ei = - Ozi (19)

For the materials used in this study, it is assumed that the non-zero components of the

rotated piezoelectric tensor eq are e31, e32, e3z, e24, e15, e2s, et4, and e36. The elastic

stiffnesses Ci./ are those of an orthotropic material rotated about the z axis, and the

dielectric constants are given by eXl, Ca2, e22, and e33.

The starting point for the variational formulation is Hamilton's principle for a piezo-

electric medium [67], expressed as

t [_pujui- H(Skt , + ftl dt fs(tJ,,Suk &bo)dS O (20)6ft idtfv 1 " " Ek)]dV ' - =

Here t is time, V and S are the volume and surface occupied by and bounding the solid,

t" and _ are the specified surface tractions and surface charge, respectively, 6 is the vari-

ational operator, the. superscript represents differentiation with respect to time, and H

represents the electric enthalpy. The electric enthalpy is given by

1 1

H = _Cij_tSijSkt - eij_EiSj_, - _eijEiEj (2t)

14



The weakform of the governingequations,aswell as the governingdifferential equa-

tions themselves,can be found by applying the variational operator in equation 20 over

a typical element. For the material constantsof a typical lamina usedin this study, the

first variation of the electric enthalpy is

OuO6u _ OuO6v Ou O6w Ou ( O6u 06v )

C OvO6u C OvO6v OvO6w12--_+ ----+ +
Oy Ox 220y Oy C2a Oy Oz

Ow 05u Ow 06v Ow 05w

Cla Oz 8z _ C23 + Can +Oz Oy Oz Oz

- to-. --N-,J/ -

Ov ( 06u 06v )+c'6N t-N-y+ ox
]

Ow ( O_u O_v)+c_W \-N-j+ ox
#

+ 0y) -8; + ox /

+_). _-_;+ o_)

(o_ or) o_+ C28 + _zz 0y

+

+

c,6(o +_-g-; +

c_ N+g --g;+c_to + N toy + o_)-

e,45E, _+_ -exs6Et _+_ -e246E2 -_z +_ -e2s6E2 _+ Ox/ -

Ou Ov __, 0<,, ( &, Or)e3,SZ3-_z - e325E3_y-y - e3aoz;:_--j_- - e3_,5/2,'a \_-y + 0z -

qlElSEl - e2"2E26E2- eaaE35Ea - q2EiSE2 - ei2E25E, -

_'_E' \_-z + 0y /-elsE, _+-5-;/-_E_t-gz +-N-j / -_E_t-g; + O_1-

e3,E O____e_2E30____v_ 05w _ /06u 05-v'_(22 )

Using the assumption of periodic motion, the substitution of this expression into equation

20 yields the final weak form, which provides the basis for the finite-element approxima-

tions over an element. It is possible to integrate this expression by parts to give the three

equilibrium equations and the conservation of charge equation. For brevity, results of this

step are not included here.

Displacement Functions

There are several cases in both static behavior and free-vibration anadysis [or which
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either exact solutionsare availableor global in-planefunctions ca, representthe elastic

and electric fields within the laminate. One suchcaseis for simply-supportedplates. In

this case,the Navier-typeboundary conditions along the edgesof the plate are givenas

w(z,O,z) = w(z, Lu, z) = w(O,y,z) = w(L_:,y,z) = 0

¢(z,0,z) = ¢(x, Lu, z) = ¢(0,y,z) = ¢(L:_,y,z) = 0

u(z,O,z)=u(z, Lu,z) =0

v(O,y,z)=v(L::,y,z) =0

These conditions are satisfied exactly for the functions

(23)

(24)

u(x, y, z) = U (z ) cos px sin qy = 0 exp(sz) cos pz sit, qy (25)

v(x, y, z) -- V (z) sin px cos qy = (" exp(s z) sin px cos qy

w(z,y,z) = W(z)sin pzsin qy = I,V exp(sz)sin px sin qy

¢(z, y, z) = qS(z) sin p:r sin qy = _ exp(sz) sin pz sia 'lY

Finite Element Approximation

The through-thickness approximation for each displacement cotJ_ponent and the elec-

trostatic potential can be given as

n

_(z,t) = _ vj(t)_(_)
j=l

v(_,t)= _ v_(t)_(_)
j=l

w(_,t)= _ %(t)_7(_)
j=l

I'L

¢(z,t) =_ aj(t)_(z)
j=l

(26)

Hence the variables are represented by linear combinations of a known through-thickness

distribution described using the one-dimensional Lagrangian interpolation polynomials
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t_j(z) [14,16].The in-planedistributions arealready includedin the total approximation.

Here (n-l) is the numberof subdivisionsthrough the laminate thickz,ess(typically taken

equal to or greater than the numberof layers in the laminate), and Uji is the value of

componentu at heightj correspondingto the i-th in-plane approximation function.

The differencebetweenthe two theoriesconsideredhere is in the form of _f. For

the caseof constanttransversedisplacementthrough the thickness,this function is equal

to 1. For a variable-wapproximation, this function can be any Lagrangianinterpolation

polynomial. It is alsopossibleto usefunctions in the z-direction which are non-zeroonly

over specifiedregions. This would be most useful for the function,sqJ_for conducting

materials, in which casethe potential is a constant. Also, independentapproximations

for all variablescanbeusedby denotingdifferent rangesand limits oL"integration for each

component.

Substituting theseapproximationsinto the weak form and collccti,_gthe coefficients

allows the governingequationsto beexpressedin matrix form as

[ol [ [o] [o1 {
[0] [M 33] [01 + [/ff'] [K 32] [/_:_] [ATM] {W)

(

[0] [0] [0] [0] [I<41] [1,42] [I<'3] [K""] {(f}

The elements of these matrices contain additional submatrices whose elements are de-

termined by evaluating the pre-integrated elastic stiffnesses, piezoelectric coefficient, or

dielectric constant through the thickness multiplied by the various shape functions or

their derivatives as determined by" the variational statement. These are identical to those

of the plate element, and as such are not stated here. They are do,.'umented in the next

chapter.

The nature of the submatrices depends on the approximation used for w. For variable

w, the structure of [K j3] are similar to those of the other matrices. Depending on the

approximation functions used, this type of model is either similar o_' identical to a three-

dimensional finite element model of the equations of piezoelectricity. This aspect and other

computational issues regarding these types of models for elastic lami i_,ttes are disc_lssed in

[61]. For constant w, the submatrices within [K_a], [K2a], and [I.{_a] a,re column vectors and

those in [K aa] become scalars. In general, the submatrices within [I<_j] are each of order

(n+l), while the [I( _j] themselves depend on the order of in-plane al_proximation. These
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canbe definedby the subscriptscr and ft. The final representation of these elements can

be expressed in fairly compact form and are given in the chapter on the plate element. In

matrix form, they are written as

[Kooj[Ko,j
[[M] (o]]{ l 'l LK 'J } (2s>

Assuming periodic motion and eliminating the potentials results in the eigenvalue

problem

where

([/-(]- w2(M]){A} = {0}

[K] = [K,,A] - [Ka_,][K_¢]-'[K_,A] (29)

The numerical results for the preceding theories are given in a later chapter. However,

it is necessary to note at this point that the case of a constant trausverse displacement

gave results for both the static and dynamic cases that was wholly inadequate for most

geometries. Part of the reason for this was the fact that the transverse strain must be zero

in this case, which implies that the actuation strain is also zero. For any dimension plate,

this is a hindrance far more severe than for the pure elastic case, as this strain figures

significantly in the stress computation and in the evaluation of the electric enthalphy

terms.

This type of behavior can be asauaged by introducing approximations for w that are

at least linear through the thickness of the entire laminate. This is accomplished using

an approximation function for w through the thickness of the laminate that is completely

independent of the two in-plane components and the electrostatic potential.

This type of approximation can be thought of in the following fashion. Each indi-

vidual layer can be described by one or more "real" layers for purposes of finite element

discretization through the lamina thickness, composed in this study of linear Lagrangian

interpolation polynomials. Spanning over these layers is one or more "pseudo-layers" (see

Figure 3), which is the range of layers encompassed by the linear approximation for any

of the variables, which in this case will be the transverse displacement w. For example,
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considera plate with three physical layers, which is modeledusing three layers (and 4

nodes)for u, v, and ¢ but a singlepseudo-layerfor w. Eachof the linear basis functions

for u, v, and ¢ has support only over two layers, with the basis function for w spanning

over all layers.

The shape functions for the i-th layer for each of the true layers are given in terms of

the global z-coordinate as

_1 : Zq--Z
hi

¢_= z- _h_ (30)

Here hi is the thickness of each of the true layers, and the t superscript indicates "true"

and corresponds to the approximations for u, v, and ¢ (and any, all. or none of these may

have this type of approximation).

The approximation functions for the transverse displacement col_q_onent are given by

Z

¢[ = 8,- _, L--;
Z

¢_ = _, + .,U (31)

Here Lk is the thickness of the k-th pseudo-layer, and the values for a, 7, and _ change

for each true layer, with their values being given by

hi
ai = -- (32)

Li

._,= _ _, (33)
j--1

i

8, = 1 - _ el (34)
j=l

By analytically integrating the products of the appropriate shape functions and their

derivatives, the appropriate sub-matrices similar to those computed earlier for the original
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two theoriescan be obtained. This approachhas the significantadvantageof allowing a

transversenormal strain through the laminate thicknessbut introducing only (potentially)

one new degreeof freedom. By allowinga transversenormal strain, the difficulties of the

constant-w theory disappear. Examplesof this type of behavior are given in a later

chapter, but indicate one of the major conclusionsof this study: it appearsthat the

constant-w theory is wholly inadequatefor modeling the behaviorof piezoelectricsolids

becauseof the inability to model the normal actuation strain.
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4. THE PLATE ELEMENT

In this chapter, the theoretical formulation for piezoelectrically laminated composite

plates are presented. The variational form is obtained using Hamilton's principle for a

linear piezoelectric solid [67]. The equations resulting from this variational statement will

be solved using the discrete-layer theory similar to that described in the preceding chapter,

in which the three-dimensional elasticity theory is reduced to a two-dimensional laminate

theory by assuming an approximation of the displacements through the thickness.

In this study, a piece-wise linear variation is assumed for the in-plane displacement and

for the electrostatic potential components through the thickness. Regarding the trans-

verse displacement components, three theories will be presented: 1) at constant transverse

displacement through the thickness, 2) a piece-wise linear variati_,ll Lllrough the thick-

hess, and 3) an independent piece-wise linear variation through the thickness different

than that of the in-plane and potential components.

Governing Equations

Electric Field-Potential and Strain-Displacement Relations

The electric field components are related to the electrostatic potential by [67] :

Ek = -_,k (35)

In Cartesian coordinates, the above expression yields:

0qo 0¢2 (36)o%p E2 - E3 -" -
E1 = - O--z Oy 0 z

In addition, the strain-displacement relations are given by:

S_j = _(u_,j + uj._) (:37)

which turns into the following six components when is expressed in cartesian coordinates:

S== Bu S_ 1.Ou Ov= O---; = _(_ + _)

Ov 1 .c_gv Ow

s_ = N. s_:= _.(V.-_+ _,__)
Ow 10u Ow

s,..= 0--2 s= = _(_ + o__)
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Constitutive Relations for a Piezoelectric Material

For a piezoelectric material, the mechanical behavior is coupled together with the

electrical behavior. This electromechanical coupling is described by [67]:

aij = CijktSkl -- ekijEk (38)

Di = eiktSkt + eikEk (39)

Here aq represent the components of the stress tensor, ekij are the components of the

dielectric permittivity or the piezoelectric constants of the solid_, eit. are the components

of the dielectric tensor, Di are the components of the electric displacement tensor, and

Cijkt are the components of the elastic stiffness tensor.

Since we are interested in a linear theory, it is important to note that:

Ci3kt = Ciitk = Cjikt = Cklij

eijk = eikj

£ij = Eji

Taking into account this symmetry of the material, Nye [68] compressed this notation

by replacing ij or kl by p or q, where i,j, k, and 1 take the values 1,2. and 3, arid p and q

take the values 1,2,3,4,5, and 6. Hence the equations can be rewritLen as:

ap = CpqSq - ekpEk p = 1,2,...,6 q = 1,2,...,6 (40)

Di = eiqSq +eikEk i = 1,2,3 k = 1,2,3 (41)

Now that the elastic, piezoelectric, and dielectric constants are specified by two indices,

they can be written in matrix form as follows:

Cii =

6,, Cn C,a C,4 C15 C1e

C12 C2_ C23 C2_ C_._C28
6'13C_3 C33 C_ C35 C36
C1_ C24 C3_ C4_ C45 C48
C,5 C_5 C35 C_5 C55 Cs8
C,e C26 C38 C46 C56 C66

(42)

ekp --

ell el2 el3 el4 el5 el6

e21 e22 e23 e24 e25 e26

fi31 e32 e33 fi34 e35 e.36

(43)
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_ll _12 _13
_q = _12 _22 _23 (44)

_13 _23 _33

At this point, we have 21 independent elastic constants, 18 independent piezoelectric

constants, and 6 independent dielectric constants. Because of the symmetric properties

of some piezoelectric materials, these matrices can be further simplified. For instance, for

a monoclinic material, which can represent an orthotropic layer oriented off-axis, these

matrices can be reduced to:

Cij --

Cll C12 C13 0 0 C16

C,2 C22 C_3 0 0 C26

C,3 C23 C3z 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C_6 C_6 C36 0 0 C66

(4,5)

ekp-"

0 0 0 e14 els 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36

(46)

eij --

_,, 0 0

0 _2_ 0

0 0 _33

(47)

Thus the material with this type of symmetry is described by 13 independent elastic

constants, 8 independent piezoelectric constants, and 2 dielectric co,,stants.

Variational Form of the Governing Equations

o

In classical mechanics, the Hamilton's principle for a system with nonconservative

forces states that:

6 Ldt + 6Wdt = 0 (48)

where

L = T(kk)- V(zk,t)= L(kk,xk,t)

In the above expressions, t is time, L is the Lagrangian energy functim_, T is the kinetic

energy, V is the potential energy, 6W is the work done by the nou,xnts(,rvative forces in a

virtual displacement, and 6 is the variational operator.
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e:'t _Tz + oy oy + e:5_Ku--Y;-_+ ---E-,. )a,j

O_ 06u O_ 06v 09006w 09006u 06v )
e3_0"-_0---_+ e32Oz Oy + e_ Oz Oz + e3_( Oz Oy + Oz Oz

+

090069 090069 O_ 0690 (50)
ell Oz Oz e22Oy Oy _:_-0.- Oz

Discrete-Layer Approximation

Three theories are presented in this work. The first asssumes a piece-wise linear vari-

ation of the transverse displacement through the thickness. The secoz_d yields a constant

transverse displacement through the thickness. The last uses indepe,deut piece-wise lin-

ear approximations for w and the remaining in-plane and poU._mia.l coml)oneHts. All

theories are based on the general laminate theory of Reddy [32] for elast.ic lan,inates, with

the added feature that the electric potential is included as an additio,,al variable.

A piece-wise transverse displacement model

This theory is based on approximations of the displacement and potential variables in

the following form:

n m n

j=l i=l j:l

1% m II

j=l i=l j=l

71 "m, rl

j:l i:I j:l

In similar way, the approximation for the potential can be written as:

n 1"#1 _'l

_(_,_,_,t) = _E%(_,_,t)_(z) = _ _ %,(_)_'(x, ,j),-_'(_) (_.)
j=l i=1 j=l

where u,v, and w represent the displacement components in the x,y , and z directions

respectively of a material in the underformed laminate, and ¢p represents the electric

potential. In the above equations, two approximations have been made_ In the first one,

the transverse variation of the displacement field is defined in terms of the one-dimeusional

Lagrangian interpolation polynomials _j(z) which are associated with the j_h interface

of the layers through the laminate thickness and are defined only on two adjacent layers.
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The laminate is divided into n nodesdistributed through the thicknessat the jth level,

defined by z = zj in the undeformed laminate. At this level of approximation, the

functions Ui(z,y,t),Vj(x,y,t),Wj(x,y,t ) , and Cj(x,y,t) represent the displacement and

potential components of all points located at the jth plane. In the second approximation,

the in-plane displacement and electric potential field have been defined in terms of the

two-dimensional Lagrangian interpolation polynomials @(x, y). The j,h plane is divided

into two-dimensional finite elements and m represents the number of nodes per every one

of these elements. At this level of approximation, the functions Uji, Vjl, Wji, and _ji

represent the values of the components u,v,and w , and (p at height j corresponding to

the i th node of the two-dimensional finite element.

Now substituting equation 51 and 52 into the variational form of ltamilton's principle

50, integrating with respect to the thickness coordinate z, and collecting terms, the final

equation in matrix form can be expressed as:

or

[K].{A}. = {F}. (53)

[K"][K'21[K'3][K"]
[K'21[K_21[K231[K241
IN_31[K_1 [K_1 [K_1
[K"I [K_4I [K_I [K441

{'} {f"} (54)
{w} = {f_}

o {_} o {J"} o

The elements of the stiffness matrix [K], and force vector {F}_ are given below:

[KUl_o = /A[ 0x Oz +[A'61(Oy ax + Ox ay )+

/A [ O_I!_ O@_ [A_61O_ 0@_ [A_6] O______ O_[K'2]°_ = [A'2] Ox Oy + '-_y Oy + vx Ox +

[K13]oa

-_y Ox J dzdy

[B"_I O _ [e_l-_y_ff_ ' + [B ]*o-:_"-tj -l-Ibel '--5_--_'+
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(55)
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{q} = iADi_idxdy (56)

/.

{F} = JAfiqidzdv (57)

The matrices involved in the above equations result from the evaluation of the integra-

tion of the elastic and dielectric constants through the thickness of the laminate. These

matrices can be written as follows:

-A k..'_,, = k/z'+'Ck,.._i(z)¢j(z)dz
1=1 "zi

(58)

D_]" - _N [_,+, ckmd_'(Z)dz d_j(Z)dz dz (59)
1=1 czi

N

B.km / z'+',a = _ Ck,_¢i(z) dCJ(Z)d." (60)
1=1 -"zi dz ~

N [=,+, dffi(z)D_'_ = _ ck_ CAz)dz (61)
i= l _z, dz

F,÷, d_(z)
P--'i'7 = _= .,_, ek_ _dz Cj(z)dz (62)

(63)

N

:,s = .,z, ek_ q)i(z j(zldz (64)

" e,,,,, d_j(z) dz (65)
i=x ., zl dz dz

<r :
i=x ., zi dz dz

_k.m = k/zi+i

1=1 " zi

(67)

where N is the number of subdivisions through the thickness and, in general, it will be

taken equal or greater than the number of layers in the laminate.

The theory which allows independent piece-wise linear approximations for w and the

remaining components can be represented by the above discussion, with the provision that
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now the through-thickness linear Lagrangian interpolation polyuuu:i_ls will different.

A constant transverse displacement model

The following approximations for the the displacement and potential variables are

assumed:

TI, 1"n TI

_,(x,u,z,t) = _ vj(x,u,t)_(z) = _ _ gj,(t)¢_(_,ylc_;(.-)
j=l i=x j=l

n _1, n

j=l i=1 j=l

w(_,y,t) = F_,w'(t),E_c_.,u)
i=1

71 m r_

¢p(x,y,z,t) = _ _j(x,y,t)_;(z) = _- y_ (bji(t)¢_(x,y)'P_,(:) (68)
j=l i=1 j=l

The only difference between these approximations and those assum,:d in the_ _,ther models

is found in the approximation used for the transverse displacemem iJJ the = direction. In

this model, the transverse displacement is considered constant through the thickness and

therefore the one-dimensional Lagrangian interpolation polynomials _J(z) used before is

equal to one. The Wi represents the transverse displacement corresponding to the i - th

node of the two-dimensional finite element used in the approximatiot_s through the x - y

plane.

Proceeding in the same way as that used in the other model. II," folk)wing element

stiffness submatrices of [K], and the force vector {F}, are obtain,-d and may be written

as:

a_, o_ 3 rA,61(O_, 0_ 0_ 0¢ 3[KU]_ = fA [An]Oz Oz +_ ' "_y az + az _ )+

0¢_ 0¢y
[D55]k_¢_+[A66] Oy Oy dxdy

JA [ -_X Oy + [A ] "_y Ou + [A'_]_ - 0x +

[D 1_ z +[ A661 Oy Ox jdxdy
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[K13]._ =

[Kl4]a# =

[K22]afl = fA A221 ay Oy + t,- ,, O-_ ay

v v_

44 ",' " IA6sl O*_Oq_ dxdy
[D ]g2,__ # + v . , cgx cgx

[S AB,t4_,,Oq_ {AB4S}kll:_x_ dzdyfL"" " ° °----;+

rv3210 ak_,;

I'p361 0 a ff_v_ 1

W ]"-_x _"#] dxdy

[AA440g2' _ 0_ nd4s(O_ _ Ogl_ 0_'_ 0_

Oy J dxdy

+ (EE_5) Oz + (EE"_) Oy Oy

(69)

(70)
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As before, the matrices and vectors involved in the above equations result from the

integration of the elastic and dielectric constants through the thickness of the laminate.

These matrices and vectors can be expressed as :

Aik_ = _-_ fzt+lCkm_i(z)ffdj(z)dz (71)
l=l .,z l

. f.,+, y=) (._)D_,?= _ C_.a- _j(:)
/=1 ."zl dz

1=1 Jzi

_,_ = _ <,<,,, ¢'s(-)d.- (74)
/=1 .,:, dz " -

N LzI+IE,_' = _ _,,,_,(_) <s_ (75)
1=1 Jzt

N

izl+ 1AA km = _ Ckmdz (76)
= JZ!

/=1 .Jzi

Transformation Matrices

In this work, it is desirable to simulate the behavior of a shell eletuent derived from the

plate element using an assemblage of flat plates. In this sectio,s it is assumed that the

behavior of a continuosly curved surface can be adequately represeau,d by the behavior

of a surface built up of small plate elements.

Consider a typical plate element as derived in this section of the report. In general,

there are four degrees of freedom pei" node in the j_h level, and depending on the approx-

imation used for the transverse displacement, w, in the z direction we would have either

4.(number of layers +1) when w is a linear function through the thickness of the laminate

or 3.(number of layers +1) +1 when w is considered constant through the thickness of

the laminate as the total number of degrees of freedom per node through the thickness.

The independent approximation case can be considered in this section a_ well.

The stiffness matrix derived before was based on a system of local coordinates, there-

fore a transformation of coordinates from a local system, (x',y',z') to a global system

(x,y,z) will be necessary in order to assemble the elements and to write the appropiate
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equilibrium equations. Moreover,it will be convinient to read the elementnodecoordi-

nates in the global systemand get from thesethe local coordinates.

Therefore accordingto figure 14,we havethat:

{V'}=[T]{V} (78)

where Vi_ are the components of a vector on the local system, Vi are the components of

a vector on the global system, and Tii are the cosine angles between the local and global

axes and the matrix is given by:

1 0 0 ]
Tij = 0 cosfl sinfl (79)

0 -sinÊ cos_

The cosine angles can be calculated by the following expressio.s:

cos_ = yj - yi sin_ = zj - :_ (80)
_/((zj- _,)_+ (yj - y,)_) _/((zj- ..,I_+ (yj - y,)_)

Since we have to transform both the forces and displacements by using the equation

78 and taking into account that [kToc_t]{Atoc_, } = {F_oc_,}, we get th,: fi,_al relationship:

([T]T[k_o_.t][T]){ Agtob.t } = {Fgtob_,t} (81)

but

"" T T k"[ICgtob.,]= [] [',ocot][T] (S2)

therefore we can write equation 81 as:

[K;,o_o,]{ag,o_o,}= {&o_o,} (83)

where Ai are the components of the displacement vector, Fi are the components of

the force vector, kii are the components of element stiffness matrix in local coordinates,

and Kii are the components of the element stiffness matrix in the global coordinates.

Therefore for one node in a linear plate element and for both theories, with w varying

and w constant through the thickness, the corresponding displacement vectors will appear

as

/U12

Vn
V12
Wn
W_2
Cn

(84)

32



Ull

U12

¼1
V12

Wl
(1)11

(I)12

and the corresponding transformation matrix [T] will be:

1 0

0 1

0 0

0 0
Tij= 0 0

0.0

0 0

0 0

0 0 0 0 0 0

0 0 0 0 0 0

cos3 0 sinfl 0 0 0

0 cos3 0 sin3 0 0
-sin3 0 coal3 0 0 0

0 -sin_ 0 cosl3 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(85)

Examples of applications of this element are included in the t't,._ults chapter of this

report. As of this writing, only the flat plate case had been investigated with the assembly

of plates remaining to be studied.
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5. THE SHELL ELEMENT

In this chapter,the formulation for two laminated piezoelectricsh_ll elements is given:

the cylindrical shell and the general curvilinear shell. Both are based oa solutions of the

weak form of the equations of motion using the discrete-layer type theories described in

the two preceding chapters.

Variational Formulation in Cylindrical Coordinates

A special case of a laminated shell is the cylindrical shell geometry, which is best

formulated in cylindrical coordinates. Let u,v,w be the components of displacement along

the r,O, and z directions in cylindrical coordinates, respectively. The strain-displacement

relations and the stress equations of motion are given as

Ou 10v u Ow

= = + --r = --0: (86)
Ov 10w Ow Ou 10u Ov t,

70, = _z + --- ",r.-= -- + -- "Yre-- + (87)r 6q0 Or (_z r 00 _7' r

1 O(rarr) 1 (Onto Oar, aao
pfi - + -_ + _ _

r Or r 00 Oz r

1 0(r2a0r) 1 Oaoo Oao_

p5 -- r2 0r +-r_00 +-oz

1 cg(ra**) 10o'za cOaz,

r Or r (90 Oz

(88)

(89)

(9o)

Because the normal vector of layer surface will be taken along the r-direction, also this

direction is assumed to be the poling direction of each layer, the mtttrix of piezoelectric

coefficient is given as

I ell el2

0 0

0 0

Also, the electric field can be written as

e_3 0 0 e_6

0 e24 e2S 0 l0 e_ e3s 0

(91)

0¢. 10¢. 0¢.
E(r,O,z) = ore* eo -r 00 -&ze" (92)

Hamilton's principle as writen in equation 14 can be expressed as

q [_puiui-H(Skt, Ek)]dV+ ft° - d6¢)dS'i d'Ll ""
= dt - [pfi6u + p_& + pCv6w]- Cl_ Ou Oj_2u

Or Or
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-[c,, [o,. + +--NJ + O,+ N)-g-_] _ a.. + T;/,_)
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C Ow Ou.(O6w O_u.- _t_+ N) --_-_+ -T;z)
10_ 0_ ,..t_ 06, _)

-C_(;_ + N- ;)t; 00 + 0-T- _ o<,/o__
.0¢0_ _0_2¢__t [0¢(8_ 0_. (._+-_'_LN + +-N_ + N --aT]

-e_'(_-g:-,- + 0," O,'" "

•O¢O_w a_¢Ow

.lOu Ov v)08_
_) +(TN + o-;-7 -:EZ_]

r

1
-- --_24

1
-- --£-25

--_34

O, 1Ow,O_¢ O_(0__Y!

a_ oH ) a___._._o4 .o_
(_+_ o0 +_t-g;/

1 06w .l

+ Oz]

i 08w .l
Ov t Ow, O_¢ 04 (0_v

.f o4a_¢ t o4o_ o4o__2_1}
(93)

o

This state provides the basis [or finite element approxlmation_ to the equations o[
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motion as formulatedin cylindrical coordinates,and are a special caseof that described

below. This moregeneralcaseis describedthoroughly and hasa correspondingnumerical

algorithm that wascompletedaspart of this proposal.

Variational Formulation in Curvilinear Coordinates

To analyze the laminated piezoelectric shell with arbitrary geometry, curvilinear coor-

dinates ( see Figures 4 and 11) will be used here to overcome the disa.dvantage fl'om the

integration directly using the global coordinate system. The local and global systems can

be related using mapping technique. Let u, v, w be the components of displacement along

the z-, y-, and z-coordinate directions of a Cartesian coordinate system, respectively. This

coordinate represents the global coordinate system. The curvilinear coordinate system,

described by _-, r/-, and C-coordinate directions, is the local system for the general shell.

Let u, v, w be the components of displacement along the _, 7], (,-coordinate directions.

A laminated shell with complicated geometry can be separated inl,, .s<.,ver_,l .slllall parts

that function as shell elements, and described using more but simpler curvilinear coordi-

nates. In this section, the variational formulation will be expressed in terms of the local

coordinate system.

The strain-displacement relations and the stress equations of motion using the global

coordinate are given as

Ou Ov Ou'

_= = _ _ = _ _""= oW (94)
Ov Ow Ow Ou Ou Uv

%'=_+N _==_+N _=N+o-7 • (95)

0_= 0o'=_ 0_=_ (96)
er, = o-7-+ -g-y-y+ o--T

Oav_ 0o'_ Oa_. (97)
pr, = o_ +-_y + o---2-

Oa_,, Oa,_ Oa_ (98)
P_ - o,, +g_-y + o--2-.

The electric field can be written as

o¢.. o¢.. o¢..
E(z,y,z) = _-£ze. - _-_y% - _--_ze, (99)

The strain components in global coordinate system can be changed into the local system
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with the coordinatetransformationsgivenby

8.__x

0z
On

0¢

r-=o--=
az

0__ 0z [
0( 0"( ez: _zu _=z

It can be written as : [e]_,K = [J t/_'--_)le,.,¢/J[]-e-=y:lJ-/_'-_]

j xyz

¢9..._x
a_
_ga:

m. m
On
O..Ex
0¢

T here

az I
0"-'_ / Jn J12 g13

o_i = Jl_ J22 -123On On

o¢°_] J31 J3z J3a

Equation 100 can be further expressed as :

_¢( ' =[T]' e:= =

Ox Ox Ox
O_ On O(

8x . Oz

O_ O0 O(

{E}_n( : <

(100)

(lOl)

(102)

J_i J_ J_3 2J12J13 2J11J13 2JllJ12

J_2 J_ 2J_2J_ 2J3i J_3 2JalJ32
J_lJ_l J_:J_l JaaJ33 J_Jaa + J_J3_ JalJ33 + J_3J31 JllJ_ + J_J31

JnJ3_ Jl_J_ J_3J33 J12J_ + J_J3_ JnJ33 + Jl3J3_ JHJ_2 + Jl_J31
JnJal J_aJ_ J_J_a J_J_ + J_aJ_a JnJ_a + JlaJ_l JnJ_a + Jl_J_l

Cyy

(:i

Cyz

The (u, v, w) in x,y,z system and (_, _, _) in _, r/, ( system can be rela, ted using

fi . t_,v,¢) [,1,
(103)

The electric field (E=,E_,E,) and (F,¢,En, E,,,:) can be related using

{ }= , _ Ey

. k¢,r/,_/j E:

(104)

The first differential of (u, v, w, ¢)a,oS=t to (z,y,z) and (u, v, w, ¢),_,ob.,t to (_,'1.() can be
,T

related using the matrix, [j-z f_.__l\_,n,¢ll

t/,,x '/2,y tl,,z

V,: _,y 'U,z

W,x W, i W,z

¢,= ¢,_ ¢,=

Zt_ ll,n Zt(
v,_ v,n v,(

w,_ w,n w,(

. ¢,_ ¢,. ¢,¢

oA oA _
Ox 8_ O =

az oy Oz

(tos)
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The (-direction is located along the normal direction (alsothe poling direction) of the

layersurface,and the _- and 77-direction parallel to the layersurface.Henceequations100

and 102canbe usedto presentthe elasticstiffnessmatrix and the matrix of piezoelectric

coefficientin the curvilinear coordinate system. The variation of electric enthalpy, 6H,

canbe expressedas the following equation.

6H = E1]loool,_[_,j,P_,,],oo,.,[.R][C],oo,,,[R][_,j,- r

= 6let,,.,, Et]gtob_t[T]'T[R][C]tova[R][T'][:,_,Et]gtoba ,T

= 6[e,,.,,,Ez]9,ob,.,[R]([7"]T[R][C],oc_,,[R]['2"])[R][e,m,£'_]_obo,

= 6[e.t_,Et],tob_,t[R]([C]o,obat)[n][et,-,,, Z,],tob,,,T

= ,5[u,,,,,,¢,,]_,z[B][C],,o,,,[B]r[u,,,,,,¢,,]r

= 6[u,5, ¢,,]_,_¢[].][Bl[C],,ob,_,[SlT[].l:r[u,j, ¢,i1T¢ (106)

Where

[_lm, El]global'- [ _xx _ _zz _yz £zx _xy E_: Ey Ez ]

Ou Ou Ou av Ov Ov @w 8w Ow -O_[Ul,rn' ¢l]m_lz = @x a_ Oz o.v oy Oz ox @y @z 8.v

Ou Ou Ou Ov Ov 8v ow o_ @to -O_

(1o7)

(108)

(109)

(110)

[R]=

j-x¢_ 0

0 j-l(_

0 0

0 0

1000000

0100000

0010000

0002000

0000200

0000020

0000001

0000000

0000000

0

0

j-1 (_____n(::
0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1
9X9

0

0

0

j-_(_

T

12x12

(iii)

(I12)

38



tO0
0 0 0
0 0 0
0 0 0
010

[B]= 000
000
000
001
000
000
000

IT']= o

000000

001000

010000

001000

000000

I00000

010000

I00000

000000

000100

000010

000001

° 1[j(_l
\Cn,(]J3x3 9x9

{R][C],o¢o,[R][2-]

12x9

(113)

(114)

(115)

(116)

The matrix [C]toc,,t that include the elastic constants, piezoelectric coefficients, and di-

electric constants can be written as

[C]_oc,,I =

ell C12 C13 0 0 C16 0 0 --C31

C=1 C22 C23 0 0 6'28 0 0 -_3_

C31 C32 C_ 0 0 C36 0 0 -e33

0 0 0 C_4 C_5 0 -e14 -e_ 0

0 0 0 C54 Cs5 0 -el5 -e2_ 0

C61 C62 C_ 0 0 C66 0 0 -e_

0 0 0 --el4 --elS 0 --_I 0 0

0 0 0 --e24 --e25 0 0 --E2 0

--e31 --e32 --e33 0 0 --e_ 0 0 --_3 9x9

(117)

Here the moduli and material axes of each layer, [C]_oc=t, can be obtained.

The variational formulation using curvilinear coordinate can be derived using the

above relationships, and can be expressed in compact notation as

T

6 [uij, ¢,i]OT( [Dl [ui,j, ¢jleT() det J( _--_, ( ) dV_,7( di
(118)

I l--[:']IBllcl,,o o,I l• [:']" (119)

(I:_0)
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{'}=

(121)

(122)

Discrete-Layer Theories

To analyze thick laminated piezoelectric shells, discrete-layer theories are used in cre-

ating the numerical models. The governing equations in matrix form are available for

both cylindrical and general shells.

Background And Motivation

Most theories developed for analyzing laminated piezoelectric composites include limi-

tations which may not represent the true behavior for certain applications. For the analy-

sis of thick laminates under small deflection, the use of Kirchhoff hypothesis as theoretical

background causes an undesirable approximation of both interlaminar and intralaminar

stress components. In addition to this limitation, many previous studies have made use

of an equivalent force representation of induced strain actuation in the piezoelectric lam-

inate. This kind of approach does not solve the coupled equation of piezoelectricity. To

analyze thick laminated piezoelectric shells, cylindrical or general, the above limitations

need considerable refinement. This is the direction of this research.

In this research, discrete-layer theories developed by Pauley [81], Reddy, Barbero,

Teply [32, 43, 44], Robbins [531, and Heyliger and Saravanos [59] are used. The main

reason for using these approximations is that the coupled relationship between elastic

and electric variables can be exactly represented. Additionally, the limitations fi'om the

Kirchhoff hypothesis can be avoided.

In discrete-layer theories, the kinematic assumptions as shown in Figure 5 defined for

the laminated plate element are :

1. Through the thickness of composite elements, arbitrary variations are allowed within

the in-plane displacement components and the electrostatic potential (i.e. u,v, and

¢), and

2. There are three assumed forms of the transverse displacement component ,w, which

are used to develop two separate theories.
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• A constant transversedisplacementthrough the thickness,

• A distributed transversedisplacementwhich is identical i_ form to the other

variable through the thickness.

• A distributed transversedisplacementof which the form is not completely

layer-wiselike the other variable through the thicknessas shownin Figure 6.

Within the laminated cylindrical shell element,the first assumptionyields reference-

surfacedisplacementcomponentsand electrostatic potential that are assumedto have

arbitrary variations through the thickness (r-direction for cylindrical shell, (-direction

for general shell). In the secondassumption, the transversedisplacementcomponent,

w(r, 0, z) or w(_¢, r/, (), is with the direction normal to the shell surt'_.c,' (r- or (- direction).

The theory developed with a constant transverse displacement (i.e. w(r, 0, z) = w(O, z)

or w(_¢, r/, () = w(_, r/)) is for simpler and more economical in computation. However, poor

accuracy is given when calculating the interlaminar stress or analyzilzg thick laminates.

As with the case of the constant w formulation for the plate, it is impossible to capture

the through-thickness actuation strain using this form of approximation. With the second

assumed form (i.e. w is function of r,O,z or function of (,r/,¢'), the approach is more com-

plex and more expensive, yet much more accurate. Both approaches will be investigated

in this research. With the use of discrete-layer theories, the variational formulation is

further derived for the type of approximation used in this approach.

Governing Equation in Matrix Form for Cylindrical Shell

In this section, a re-arranged variational formulation of governing equation is presented

where a configuration of simultaneous equations is obtained. Secondly, an approximation

of displacement and potential variables is given. The development of the discrete-layer

theory for piezoelectric laminated shell begins with this.

pressed for further computational models.

Equation 100 can be rewritten as

ft_' dt f, [pfi_Su + pfi6v + pCo6w] rdrdOdz

+ dt _ Ctl Or + C_2u--r+ Ct6r0u 6at rC 0u

&Su Ou C_6 _-_ ++FF 0--7+ --Z-+ "F-F 

Finally, a matrix form is ex-

+ 2"_- + _
r r
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- at (L6,_+ b6v + L6_- a_¢)as = 0 (123)

Here each subscript behind the right brace shows the connection between the variational

form and the matrix form that is going to be derived.

The displacement and potential variables are approximated using linear combinations

II 111 II

_(r,e,z,t) = _ u,(e,z,t)Cs(r) = _ _ vso(t),:(e, :),.,,:¢,) (124)
j----1 a=l j=l

11 lift n

v(,.,O,z,t)= _ vj(o,z,t)¢_(,.)= _ _ Vjo(t)_:(o,-)_';(,.) (12_1
j=l a=l j=l

FI, 171

w(_,o,z,t) _w;(0,z,t)¢_(_) _ '° 0= = Wjo(t)q_, ( . z);i,_'(r) (126)
j=l a=l j=l

n m rl

¢(r,0,_,t) = _ cj(0, _,t)¢j(_) = E E*Jo(t)_(°,-)';'_(") (t_7)
j=l a=l j=l

of the form

If a distributed transverse displacement is assumed in the di_cr,:l--laver theory, o_m-

dimensional Lagrangian interpolation polynomials ¢j.(r) can be used for the through thick-

ness approximation in the above (g,_(r) = ¢_(r) = _/,7(r) = ¢_(r) = ,_,i(r)). Thus, n- 1

is defined as the number of subdivisions through the thickness. For better results, the

number of subdivisions should be larger or equal to the number of layers in the laminate.

The in-surface approximation for the cylindrical shell is assumed using two-dimensional

functions (0, z). The related number m is the total number of functions for the in-surface

approximation. By replacing the variables with the approximations, the governing equa-

tions can be expressed in matrix form as

[M_]
[0]
[0]
[0]

[01
[M_]
[01
[01

[Klal

[K_I
[K,_]

[ol [o1
[o1 [o1

[Ma] [0]

[o1 [o]

[KI,t]

[/'t-_,]
[K_,I
[K.I

{
{_} +

1¢} {Q}

(128)

Both the [M] and [I(1 matrices are symmetric, so, [K,2I = [I(2,1T, [I(,31 = [I(3,1T,

[If,,] = [K,,I r, [II231 = [IQ2IT, [Ii_4l = [h',21T, and [It'll = [IQ3]r. The structure of

the submatrices ([gzz],[IQ2],...,) is explained in Figure 7. Here the boxes drawn in the
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submatrix locatesthe membersof submatrix usingcertain approximatefunctions kO=and

@b.Thosebox areasarenoted as [I(_1]_i,[I(12113,etc. The expressionsin thesecasesare
given as follows.

[Mn],,b = f_ {[/] _:_'} dOdz (I'2.9)

[M22]ob= f_ {[Z]_:_;} ,tea= (a3o)

[M=]ob= f, {[Z]_'} dOdz (13t)

o-:_-

O'-"z- a--0- + [G:_] '_-z -_-z j dOdz (135)

,,O,_' .oOlI, g

--_--,,
oe: . oezoe;,t

+P"] o--;-o--r+P'] _'_ j',,,,,,_ I,_,_
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L{I "l aO -b

+ [_.]a+:a+: a+:o+:}o: oo + [c_] oz Oz do,u

_ :, o_;=[K:n]:b : fa [B"] W= _ + [A s'] _:_' + [D 4'] 0_: c_9_'
O0 O0

The sub-matrices [A,j], [Bij], .... are e×pressed as

s,J=_f"+'p¢,¢__d,',

"[,+, ov,,a+;A_? = E C_._ rdr
t=i __' ar Or

8,_.: El"+' c_., +/,.
1=1 -,rl

N [,+, 0¢i.DF =F_. c_..¢,T_,,,-
t=]. "]l'l

D,_ = E c,,,. _/.e,.
1=1 .+rl

,, _E/,,+,,3 Ckm_)i rdr

/:1 "rt

l=l Jri

N

D_,?= E
t--t

N

O" -" E

I=l

E_

Lr,+, Ckrnd2id2jdr
t

rl+, Ck_ d21d2i rdr
i

_:] e_,,n rdr
/=1 "+rl

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)
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N

ekrn dr
I=1 "rt

N

-- ekm_i dr
= "J r I

(152)

N

eke, ¢?dr
t=_-,, (154)
N

_,.7=Z:f"+' _¢_-
/=1"r' " ekm¢i-_r rdr (155)

N

,=, ", -;-_'¢/" (156)

t=t ,, (157)
N

_=I ", (158)
N

_,_...=_ f',+, -o¢,,o_+d,
t=_.., _ _ 0--7- (ISO)
N

--_-¢,'¢jd_
t=z ", (160)
N

t=l , (161)'

Here N is the total number of layers (N = n - 1).

However, if a constant transverse displacement is assumed, the, 9(r) = ¢'_(r) =

g,f(r) = ¢.i(r) but g'_'(r) = constant, say i¢, and several of the above equations must bechanged.

(123)

oa, +P'J .a, +/_"°/_-w
8z O0 I dOdz

oo, -[_'J OOz+/b,-'j__
OO dz

+[ J "_-z _ _ dOdz

[+<_,Io,=f_f fP.__ o*r .
,gz Oz j dOdz

(162)

(163)

(164)

(162)
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[ a_._a_: o_a_

Here the sub-matrices [Oo] , [Po], ... , are expressed as

0_ ,_}+ tQ (166)

iij = _ ]"+' p_:rdr, (I07)

O_}m __ i___ifr'' N r,+, CkmOO__tcrdr (168)

N /rl+ 1Pi}m: Z: c_mzer (169)
I=1 Jr| r

N fr_+ 1P;."= __, Ckm_',_dr (1701
1=1 J r4

N

_k., f"+'-,3 = _ Ckm_2rdr (171)
/=1 Jrl

0w i .
l=l Jrl

S_" = _g [,,+, ek_r t¢,l,.dr.y_ (173)
l=l ._rl

N /rl+ 1

l=l Jr¿

A Discrete-layer Element for General Shell

To model the laminated shell with arbitrary geometry, a curvilinear representation of

a discrete-layer shell element is developed using the kinematic assumptions of discrete-

layer theories. This is shown schematically in Figure 8. Within the shell, continuity of

the in-surface displacement components at a number of locations thtot,gh the thickness

(i.e. usually at the joint between layers) is required as shown in Figure 9. For the

two different forms of the transverse displacement (out-of-surface displacement), different

requirements need to be satisfied. If a distributed out-of-surface displacement is assumed,

the same continuity of this displacement component is required as that of the in-surface

components. However, if a constant out-of-surface displacement is assumed, the continuity

of this displacement component is necessary at only one location through the thickness,

such as the bottom or top surface of the shell.

The weak form of the governing equation using curvilinear coordinates was shown ear-

lier and is used to allow a much easier integration for the shell with arbil, tat'y geometries.
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To imposecontinuity acrossthe interfaceof adjoining elementswith no lossof generality,

the resulting degreesof freedomare maintained at the local level throughout the analy-

sis. This type of formulation can give a muchmore accuraterepresentationof adjoining

element sides. With the definedGausspoints, the numerical integration can be accom-

plished by mapping the discrete-layershellelement into a parent elernentthat is similar

to the discrete-layerplate elementdescribedfor the plate earlier in this report. Quadratic

in-surfaceapproximationswill be usedin the calculations to allow representationof the

curved edges.This order of approximation canbe easilymodified if i,..cessary.

To define the geometry of a laminated shell elementand to determine the Jaco-bian

matrices [J] and [J'].matz'ices,the geometryof shellelement [69]is describedin standard
fashion as

Y = Ni(_,rh() Yi (175)

Z i=1 Zi

Here (x,y,z) represents the location of a generic point within th_ sllell element, and

(2_i,Yi,Zi) are the locations of element nodes. The function Ni indica.t_:,._ 11_e shape function

corresponding to the node i. If the curvilinear coordinate systems used in all layers

are same, then the geometry of this element can be defined using only the locations of

the nodal points on any two layer surfaces, usually the top and bottom surfaces of the

element. However, if more than one curvilinear coordinate systems is required, more

nodes are needed for the approximation. The displacement compo,ents (u,v,w) and

electric potential ¢ in local system can be approximated in this fashion by the following

equations,

In Tt

u(x,y,z,t) = u(_,rhC,t ) = _ _--_U.i_(t)@_(¢,y)¢j'((:) (176)
a=l j=l

I1_ 11

a=l j=l

71

= = ( 7s)
a=l j=l

¢(x,y,z,t) = ¢(_,r/,¢', t)= _ _ ¢j_(t)¢_(_, r/)¢_(t_) (179)
a=l j=l

The j-z(____,7¢J can be expressed as :

j-x zyz =

oA _ oA

__ a_ ar_

Oz O_ Oz

= J21 (iSO)
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The member Di.i of the [D]12xx2 matrix can be calculated by

DO)O) = JikC(k)COJjl

D(i)(j+3) - gikC(k)(l+3)Jjl

D(i)(j+6) "- ]ikC(k)(l+6)Jfl

D(i)(j+9) -" JikC(_)(l+9)Jjl

D(i+3)(j) = JikC(k+3)(t)Jfl

D(i+3)(j+3) -" JikC(k+3)(t+3)Jjl

D(i+31(./+6} -- ffikC(k+3)(l+6)Jjl

D(i+3)0+o) = JikC(k+3)(t+u)J31

D(I+6)(j) = JikC(k+6)(t)Jjt

D(i+e)(j+3) = JikC(k+6}(l+3)Jjl

D(i+6)0+6) = JikC(k+6)(t+6)Jjt

D(i+6)(j+9) -- JikC(k+6)(l+9)']jl

D(i+9)(j) -'- ffikC(k+9)(l).Jjl

D(i+9)(j+3) = JikC(k+9)(t+a)Jfl

D(i+9)0+6) = JikC(k+9)(t+6)Jfl

D(i+9)(j+9) = JikC(k+9)(t+9)Jjt

(i,j,k,l=l,2,3)

(181)

(182)

(183)

(184)

(183)

(is6)

(187)

(188)

(tsg)

(19o)

(191)

(_92)

(19:3)

(194)

(195)

(196)

By replacing the variables with the approximations, the governing equations can be rewrit-

ten in matrix form. Let _b}'(() = _}'((2) = _(_) = _j((:) but _b_'((_) is not necessarily equal

to @j((). The expressions of the [M] and [h'] for the general shell are given a.s follows.

= L {[I] 4_;'} detjd(d_ (197)[M.]o_

[Mn]=b = L {[II q_:_;} detjd_dr/ (198)

[Ma3]=b =/a {[]] 4:4_"} detjd_d, (i99)

0e 0e+[m' l0e o,,+
o4104; o_==o,_ o_:,,,_

+[A2t] Or/ 0( + [A'21 Or/ 071 + [/i23] Or/ "b

detjd(&/ (200)
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(200

(202)

(_o3)

(2o_)
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-Jr [B 810] -0_/aw0_ 01I/t(_ "Jv [B 811 ] 01I/_0, 01I'/t0TI -_" [j_812] 0_I/_0W W'r'¢b

JI-[,/_910] kX/WOkX/t ..}_ [Bgll] ki/wokI/t JI- [_912] k]_:k]_:} detjd{dq

+F,,,o]o_a,,o,_,:o_+[A""]a_a,_a_,ta,,+[.a"'"]_o,,:,_;:.

Jr [A1210] _/_W AI- ] aW 21-

Where the members of [Aij], [Bij], ... , are expressed as

N [(t+l

I=l

N tQ+_

i,,: _ j,, ,+:,;<

N /Q+, Dk,.,,d,bi#.,jd_AT=E.,
1=1

i./ = Dr,-,, ._d¢

__,,,, [6+_ Dk_ d(,
Aij = E a6 O( O(

/=t

_ =E,,,
i=l

N /¢,+, D,,aa__¢yd¢
/=1

N [,,+, 0¢7
I=l

B,, = _ J(, D,m _-_ dC

(207)

(2os)

(209)

(2to)

(2t_)

(2t2)

(213)

(2_4)

(2_5)

(216)

(217)

(2ts)

(219)
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Ci_J"_ N r6+_

N w

_.k._ /¢'÷' n 0¢_ .,._dr (221)
/=l

0O_ 0 _'
¢'_ = _ J¢, 0¢ N e_ (223)

l----I

If a distributed transverse displacement is assumed in the approximation, then _bj = ¢_'.

Therefore, [A] = [B] = [C],[A] = [A]r = [t)] = [b]r = [&] = [dr], _,,d [A] = [t)] = [d].

However, if a constant transverse displacement is assumed (¢_'(() = constant), then

[/)] = [/)] = 0 and [d'] = [C] = [C'] = 0. The fundamental behavior of the shell is shown

for several layers in Figure 11.

Static solutions to problems involving this type of approxima.tiou are ['aMy straight-

forward, However, there are several difficulties involved in dynamic a,Lalyscs. These are

described separately below.

Dynamic Analyses

The kinetic energy of the system is involved when developing the Hamilton's princi-

ple into the matrix formulations. Hence, piezoelectric vibration analysis is possible using

solutions of equation 128. The primary problem in this research to lilld the free vibra-

tion characteristics (i.e. natural frequencies and corresponding mode shapes) for given

arbitrary shells and cylindrical shells, as well as the behavior of shells under a forced

vibration.

Free Vibrations

Since no external force term is assumed in free vibration problems, equation 128 can

be rewritten as [59]

[t l I01 tK°'I[Ol [ol]{ }_'l }+ [ [/<'J tu++J] { {AI{+_}}={/Olo]}

Here

(224)

[K"*] = [K*A]r =

[K,_]
[K2_]
[K_I

(225)
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}
{zx}= {v}

{w}

Ifperiodicmotion isassumed, equation 128 becomes an eigenvalueproblem, expressed as

Here [k] is formed using static condensation, which is necessary to eli,r,i,mte the potential

variables. This matrix is given by

Here a.,isthe natural frequency and the corresponding {A} presents the ,node shape.

Forced Vibrations

It is possible to analyze the behavior of a laminated piezoelectric sl,:ll u,,der a forced

vibration, especially a harmonic excitation. According to the govenlil_g _'qu_ttion in mat,'ix

form, there are several ways to cause excitation in the system : (1) app[yitlg traction

forces {f(t)}, (2) applying an electric field {_b(t)}, (8) increasing / d,',,'easit_g chat'ges in

the surface electrode, (4) mix of (1) and (2), and (5) mix of (1) and (3).

If the system is excited by surface traction forces which are harmo,,ic, and no electric

field is applied, equation 224 can be rewritten as

[0] [0] {0} {0} ,,,,l.',o,c,,} } (229)

The equation of motion of this system can be expressed to the forn, tl,at is the same as

the equation of general laminates.

After the displacements, {A}, are solved, [K _a] {&} can be used to predict the surface

charge created by shape change of the structure. The displacements can be discovered

by measuring the surface charges which are collected through a surfaL'_, electrode to the

outside detector. Furthermore, if a static electric field is applied, the eq.ation of motion

becomes

The surface charges {o}.
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If the system

no traction force

,0,}{[ol [ol

The equation of

is excited by an applied electric field that is changed harmonically, and

is applied, equation 224 can be rewritten as

{¢(t)} tu,,know_} }

motion of this system can be written as

(232)

(233)

The equation of surface charges becomes {Q} = [K ¢'x] {A} + [K ¢¢] {&(t)}.

The third way to excite the system is harmonically increasing / decrc_tsing the charges

that store in the surface electrode. Equation 224 can be rewrkte, a.s

KAO t
[[M][0] [0][01]{ f¢t } + [ [K¢,, ]

AJ_ove equation can be expressed as

(234)

(235)

(236)

(237)

-1

The corresponding voltage can be found using

If the system is excited by traction forces and an applied electric field, which are both

changed harmonically but not necessarily in the same frequency, equation 224 can be

If(t)}t,,,,k,,ow,,} } (238)

(239)

rewritten as

i01i01 ]{{¢<t)} }+[ [K¢"z] [K'¢ '] {¢(t)}

The equation of motion becomes

[MI(_,}+[KAY'l:A}=:I:t)}-[K"_']:_}

The surfacecharges can be predicted using [I(._A]{A} + [K _] {¢(t)}.Since the motion

of.theintelligentstructurecan be sensed:itispossibleto apply a requiredelectricfieldto

createor change the damping mechanism of thisstructuresystem. Thi.__.IS_ctisp,'oposed

to control (fullyor partially)the vibrationin thisstructure.
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If the system is excited by traction forces which is harmonic and ilLcl¢'asi ng / decreasing

the surface charges in the electrode harmonically, equation 224 can be rewritten as

The equation of motion becomes

The corresponding voltage can be found using equation 224. These equat ions also conclude

that if the current that flows into the surface electrode and the voltage i_ the electrode are

measured, the motion of this structure could be predicted. Furtherl_l_,_,.. I,v increasing /

.]ecreasing the charges, vibration of the shells could be controlled. lhi._ type of behavior

can be used in the active tip-clearance control of engine blades.

Computational Models

A prototype discrete-layer shell element program has been complet,:d and is included

as part of this report.
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6. EXACT SOLUTIONS

Exact solutions are developed for predicting the coupled electromechanical vibration

characteristics of simply-supported laminated piezoelectric plates. The three-dimensional

equations of stress and electric displacement equilibrium are solved usillg the assumptions

of the linear theory of piezoelectricity. The through-thickness distributions for the dis-

placements and electrostatic potential are functions of eight constants for each layer of

the laminate. Enforcing the continuity and surface conditions results in a linear system

of equations representing the behavior of the complete laminate. The determinant of this

system must be zero at a resonant frequency. The natural frequencies are found numeri-

cally by first incrementally stepping through the frequency spectrum a l,_l refining the final

frequencies using bisection. Representative frequencies _lld mode' ._lt,l,_'._ a t_:' ptc._etlted

for a variety of lamination schemes and aspect ratios.

This chapter is included because it represents the results of a tal_gc_tlt.ial study under-

taken as part of this research that was effectly a matter of necessity. Few solutions exist

for laminated piezoelectric plates, and this phase of the study was crucial in determining

the effectiveness of the discrete-layer approximations described as che main part of this

research.

Introduction

The behavior of linear elastic laminated plates composed of dissimilar orthotropic ma-

terials have been studied for a number of geometrical configurations, lamination schemes,

and boundary conditions. The exact solutions of the equations of motion for these solids

have only been obtained for the limited case of simple support. Static solutions have been

comprehensively studied by Pagano [10, 11]. For the dynamic case, the: two-dimensional

case of cylindrical bending has been considered by Jones [76, 77] ibr two-layer cross-ply

and angle-ply laminates, with the exact natural frequencies and rood, shapes being ob-

tained for a number of aspect ratios. The three-dimensional laminated plate geometry has

been studied by Srinivas and coworkers [78, 79] using an exact solution for a rectangular

plate with simple support.

Studies of the linear vibrations of finite laminated piezoelectric plates are limited. The

monograph of Tiersten [80] provides a comprehensive study of the governing equations,

fundamental behavior, and exact and approximat_e solution methodologies for single-ply

piezoelectric plates. Studies involving piezoelectric laminates have I'ol' tho most part been
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confined either to infinite plates or approximate theories and solution techniques. These

include the studies of Pauley [81], Ricketts [82, 83], Lee [84], and Yo,_g and coworkers

[851.

The objective of the present study is to develop exact solutions for LI_e static response

and natural frequencies of tree vibration for simply-supported, lami_,ated, rectangular

plates composed in part of orthotropic piezoelectric layers. The simply-supported plate is

one of the few geometries for which the in-plane functions can be selected to exactly satisfy

the governing equations and boundary conditions. The through-thickness distributions

are evaluated and found to be a function of eight unknown constants that are frequency

dependent. Imposition of the interface and surface conditions for the complete laminate

results in a linear system of equations that must be iteratively solved Ii,r each frequency.

This study builds on the work of Pagano [lI], who developed exa_ ,,,[_ltiotLs for' ._tatic

behavior of elastic laminates.

The developed solution and results presented here should provi,h, a good ha.sis for

comparison for approximate plate theories. The results could be e_i_ecia.lly important

for thick plates, in which case many theories provide poor approximations, and will help

establish the limitations and ranges of applicability of other approxim_te methods.

Exact solution

Governing Equations

The geometrical configuration of the laminate is such that that the thickness dimension

of the laminate coincides with the z-direction, with the lengths of the phtte in the x and y

directions denoted as L= and Lu, respectively. Each layer of the laminate can have elastic,

piezoelectric, or conducting material properties. The general problem considered in this

study is to determine the behavior of the elastic and electric field comp,nents throughout

the laminate under periodic vibration with arbitrary surface condition._.

The constitutive equations for each layer in the laminate are a_._,,,wd to be those of

a piezoelectric material. These equations can also be used to represent purely elastic or

conducting layers, and are given by [S0]

(242)
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Here_riare the componentsof the stresstensor, Cii are the elastic stiffnesscomponents,

Sj are the componentsof infinitesimal strain, eji are the piezoelectriccoefficients,Ei are

the componentsof the electric field, Di are the componentsof the electric displacement,

and eli are the dielectric constants. The standard contracted notation has been used here.

In this study, the poling direction is coincident with the x3 or z axis.

The displacement components ui, where uz = u, u2 -- v, and ua = w, are related to

the strain components through the relations

s,, = ko ,j + ox,) (243)

To be consistent with Equation 242, the conventional notation for the str_dn indices has

been used, i.e. $11 = $1, $23 = $4, etc. The electric field conq)om.J,._ can be related to

the electrostatic potential ¢ using the relation

0¢
E;- - (244)

Oxl

For the materials used in this study, it is assumed that the non-zero cotnponents of the

rotated piezoelectric tensor eij are e3_, e32, eaa, e24, and e_5. The elaztic stiffnesses Ci.i are

those of an orthotropic material, and the dielectric constant, s are giv_.n by ett, e2'_, and

E33.

The stress equations of motion are given by

o'ij,j --- pfii

and the charge equation of electrostatics is given as

(245)

Di,i = 0 (246)

Substituting the constitutive relations, the stress-strain relations, and the field-potential

relations into Eqs. 245 and 246 gives the governing equations of the laminae in terms of

the displacement components u, v and w and the electrostatic potentia.I ¢ as
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Css \ 8z_ + Oxflz ] + e_S OzOz - POt 2

(247)

"a-gS{+ c,, o-_y,+ C..o-_ + _ o--]_+ c./_ + o,jo=/ +

c_6\ a_.ay+ SV_] + _'"aya_- p;-)t,

(248)

O_u 0% _ 02w O2v O_o

C,.o-2_z + c_3o-V_" + c3.T=_ + c_3_ + e_.,_ +

c,, koy, + OyOz] + cs5 \ oxo: + o_2] + _ _ = o o;:

(249)

02¢ 02u 02v O2w - O2v t/"o

-_,,-g_ + _, o--g_z+ e_._a-b--_-_+ _,T._ + _._.,OyOz _ Tj_.-+ (250)

These represent the coupled governing equations for a single layer witldn the laminate.

For the problems considered in this study, an arbitrary number of huldnae are assumed

to be perfectly bonded together. At the top and bottom surfaces of the laminate, a

given load, displacement, potential, or charge can be specified. A ,umber of surface

conditions could be treated using this methodology, but the cases of pri,mry interest are

those in which both upper and lower surfaces are traction-free. It is also of interest to

consider the influence of electric surface conditions, and the cases of specified homogeneous

potential and transverse electric displacement are treated here. The laminate is assumed

to be simply supported, and the verticM edges of the laminate are assumed to be fixed

at zero (grounded) potential. Hence along a plate edge, the normal stress, tangential

displacement, transverse displacement, and electrostatic potential are specified to be zero

regardless of the remaining conditions on the remaining laminate surfaces.

At each interface between layers, continuity conditions of displacement, traction, po-

tential, and electric displacement must be enforced. Using an indexi,g scheme, the con-

ditions for the i-th layer can be expressed as, for example,
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u' =u'+' (x, h,+ly,--ft-) (2511

Here i represents the layer number, with i=l the top layer, each layer has an individual

coordinate system with the origin at the left end in the center of the layer, and hi is the

thickness of the i-th layer. Similar interface conditions exist for v, w, o, a-, r_., ruz, and

Dz. At a single interface of a laminate with n plies, there are six conditions related to the

elastic variables and two conditions related to the electrostatic variables for a total of 8(n-

1) interface conditions for the complete laminate. At both the top _tll(I bottom surfaces,

there are three elastic boundary conditions and one electric conditi(_l, ['or a total of 8

conditions. The surface conditions require specification of one variabh, [rom each of the

pairs (u,r_z), (v,r_z), (w,az), and (¢,D:). Enforcing all conditions leads to 8n equations

relating the variables within all layers of the laminate.

Method of Solution

Solutions for the displacement components and the electrostatic potential are sought

in the form

u(x,y,z,t) = U(z)exp(jwt)cospxsinqy = 0 exp(jwt)exp(sz)ct,spxsinqy

v( x, y, z, t) = V (z, exp(jwt )t ) sin pz cos qy = f� exp(jwt ) exp( s z ) sin p:r cos qy

w( x, y, z, t) = W (z, t) exp(jwt ) sin px sin qy = IJg exp(jwt ) exp(sz ) sin px sin qy

¢(x,y,z,t) = ¢(z,t)exp(jwt)sinpxsin qy = _exp(jwt)exp(sz)sin pxsin qy

(252)

Here the overbarred terms are constants, s is an unknown number, p = m ,T/L,, q = n

_r/L_, and z is the local layer coordinate whose origin is at the center of each laminae.

Substitution of these expressions into the equations of motion and tl_e charge equation

yields the system of equations

All -- C'hSs 2 A12 A13s AI4S

Az2 A22 - C44s 2 A23s A24s
-A13$ -A23s - A33,- C'33s 2 A34 - e33s 2

-A14s -A24s A34 - e33s 2 A44 "["e_s 2

The Aq elements 0f this matrix are

]{}{0/ (253)

An = Cnp 2 + C66q 2 - pw2 At2 = pq(Ct_ + (5'66) Ala = -p(Cra + Css) .414 = -(eal + els)p
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A22 = C66p 2 + C22q 2 - pw 2 A23 = -q(C23 + C44) A_4 = -q(e32 + e_4) (254)

Aaa = Cssp 2 + C44q 2 - pw 2 Aa4 = elsp 2 + e24q 2 A44 = -(Zt,l' 2 - ¢2_q 2

A non-trivial solution to this system requires a zero determinant. The resulting char-

acteristic equation is

As s + Bs 6 + Cs 4 + Ds 2 + E = 0 (25 )

Expressions for the coefficients of this polynomial are given in the Al)l,_-.lcli×. This equa-

tion can i)e written as the fourth-order equation

r 4+cr 3+dr :+er+f=O (256)

w here

C

D
c=-- d- E (258)

A -X

The roots of this equation are a function of the material properties, th,:. la t,finae geometry.

_md the frequency w. The roots can be real, imaginary, or complex, which results in

different forms for the solutions for each variable. Regardless of the nature of the roots,

the solutions for a given value of s are based on the original form for the solution for U(z).

The remaining components can then be computed using Eq. 2.53, whi, I, is rearrauged in

terms of the unknown constants as

[A 2o,m 3,-A23s A_ - Caas _" A34 - eaas _ W = 0 .4ja.s (259)
-A24s A34 -- 83382 A44 "4- _33,S 2 (_ A 1.1,_

General expressions that can be used to evaluate the constants _', W, arid _ are con-

structed as a function of the real, imaginary, or complex roots. These _u'e

_'(s) = flls't "4- ft2s 2 + ft3/// (260)
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s (/:_s4+/22s2+/23) 0
• (_)--- b(s)

b(,)

(261)

(262)

D(s) = dis 6 + d2s 4 + d3s 2 + d4 (263)

The constants di and fij are defined in the Appendix, and will change ill nature depending

on the type of root. These values and the corresponding solutions for the elastic and

electric field components corresponding to each type of root are developed separately

below.

Case 1: Real roots for r

Given n real roots for r, the 2n roots for s can be obtained using txtllal io. 956. These

roots are either real or imaginary depending on the sign of r. Following the nomenclature

used in Pagano [10] and Heyliger and Brooks [87], the solution for the displacement

components and electrostatic potential corresponding to the these roots can be written

in either case as

n

w here

j=l j=l j=l j=l

U.i = FjCiCz) + GjSj(z) (265)

Here Fj and Gj are real constants, there is no summation on j, and th,: [unctio.s C and

S and the values mj and aj are defined as

C/(z) = coshCmjz)

G(z) = cos(m_)

Sj(z) = sinhCmiz) aj = 1 (r >- 0) (266)

Sj(z) = sinCmjz) ai = -1 (r -< 0) (267)

m, = I_1 (268)
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The coefficientsLi, Mj, and Nj aremorespecificrepresentatio,_sof tlw parameters given

in Eqs. 269-271, and are given in this case as

1 4

L_ - _ (fnm_ + fl_otjrn_ + f_) (269)

+ += D-S (270)

mj

where the determinant Dj is given by

(271)

Dj = d,ajm_ + d2m_ + d3a, jm_ + d4 (272)

Using the constitutive equations in (242), the corresponding expressions for the stress

and electric displacement can be computed as

m 2.
J 4

Ci3 j-_j (f21raj

n

ai = sinpx sin qy __,[-pCil - ,1( ",2Lj +
j=l

m?
2

+/22mj_j + f23) + e3iaT-_(fa,m_ + f32m_o., + .f_:,)llj(:)
_J

(273)

'r_z

n

= sin px cos qy _[C44(L.imj + qMi ) + e24Njq]l,V_(z)
./=1

(274)

n

r_, = cospxsinqy __, [Cs5 (mj + pMj) + e:4Niq ] Wj(z)
j=l

(275)

Txy

n

= cospzcosqy __, Ce_(q + pLj)Uj
j=l

(276)
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rt

Di = sin px sin qy _'_[-ez,p - c3.zqL i + (277)
j=l

m 2. m 2.

e_as.----LJDj(f21 mj4. + f22rn_aj + f2z) + ,3zotj2_7(f3,rn _..q+ fz2rn]a_ + .li_:_)]l.Vj(z)

Here i=1,2,3 corresponds to x,y, and z for the stress and electric displacement components.

A special case in which there are real roots for r is the non-piezoelectric elastic layer.

The eij=0 in this case and the elastic and electric fields uncouple. The elastic solution

has been given by Pagano [10], and the results are not repeated here except to note that

the elastic field behavior is represented by six roots and six unknown constants within

the layer. This corresponds to the 6 interface/boundary conditions (thrt.t_ displa.cements

and the ai. stress components) for a single layer. The electrostatic bt'lt,vit,t i,t tltis case

is represented using the two roots

na,2 = _/_xlp2 + _22q2 (278)
V _33

The potential and transverse electric displacement components in this case are given by

2

_b(z, y, z) = sin pz sin qy _ B i exp(,b.z ) (279)
./=1

2

D, = -e33 sin p:r sin qy _ Bjnj exp(njz) (280)
j=l

Case 9: Complez roots for r

The elastic, electric, and geometric properties for some laminae yield complex roots.

These appear in conjugate pairs, which result in the final roots for s i,i tl," Ik)rm +(a -t- ib),

where i = v/=] " and a and b are positive constants. The solution for U(z) corresponding

to these roots can be expressed as

U(z) = c_e '_" cosbz + c2e _ sin bz + c3e -'' cos bz + C4 e-az sin b- (281)

where cl,...,c4 are real constants. Following some algebraic manipulatio,s and using Eqs.

(260-262), the solution for V(z) can be expressed as
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V(z) - cle"Z(F1cos bz - i'llsinbz) + c2e_Z(fl,cos bz + FI sinb:) + (282)

c3e-aZ(I'l cos bz + fl_ sin bz) + c4e-_Z(-fl, cos bz + F, si,, bz)

Here F, = _[T/(a + ib)] and fll = 9[V(a + ib)]. Similarly, the final expression for W(z)

can be expressed as

W(z) = cx e_" [(aF2 - bfl2) cos bz + (-bF2 - af_2)sin bz] +

c2e°"[(br_+ a_2)cosbz+ (.r_- m_)sin_z]+

c3e-°_ [(bfl_ - ar2)cosbz + (-bF2 - af_2)sinbz] +

c4e-°" [(br2 + a_2!cos b_ + (-_r2+ bp.2)_i,,/,:l

(283)

where ['2 = _.[fV(a + ib)] and f_2 = _[li(a + ib)]. The final cxp,(..._h,,, I_,, 0 can b(:

obtained in similar fashion to yield

¢(z) = c_ e_" [(ar3 - bf_3) cos bz + (-bF3 - aft3) sin bz] + (284)

c2eaZ[(b['3 + af]3)cosbz + (al"3- bf_3) sin b:] +

c_e-°" [(m_ - ar_)_osbz+ (-br_ - aa_) _in6-'1+

c4e -_ [(br3 + aQ3) cos bz + (-ar3 + bQ3) sit,/,:]

where 1'3 = _[¢(a + ib)l and 1'3 = _[¢(a + ib)].

The functions for displacement and potential in each case must be combined with

the solutions corresponding to the remaining roots to construct the complete solution

for a given layer. The expressions for the stress and electric displacemellt components

can be obtained by the appropriate differentiation and combination with the constitutive

equations as given in Eq. 242. Because of their length and relatiw: ea.se of calculation,

these are not given here.

Solution for the Laminate

The elastic and electric field components within each layer are expressed in terms of 8

unknown constants. These are determined using the interface and cuntinuil,y conditions

at the upper and lower surfaces of each lamina. For an elastic/dieh'ctric layer, there
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are 6 constantscorrespondingto the elasticpart of the solution and 2 constantsfor the

electrostatic solution. For most commonpiezoelectricmaterials, howeve,',the roots fall

into one of two categories.For somepiezoelectricmaterials, the four roots for r are real.

Correspondingly,there are 8 constants(F1,...,F4and G1,...,G4in Eq. 265) that uniquely

define the fields within the layer. For other piezoelectricmaterials, there are 2 real or

imaginary roots and 2 complexconjugateroots for r. Hencethe eight constantsare F1,

F2, G1, and G2 from Eq. 265 and q,...,c4 from Eqs. (281-284). Followingthe solution

of the total systemof equationsfor the constants,the solution for any componentcanbe

computedat any location within the laminate.

For static solutions, the coefficientmatricesare all known asare the right-hand side

elements.The solution for the unknown coefficientsreducesto solving a linear systemof

equations.

A resonantfrequencyw is unknwon a priori, yet the roots and thr_mgh-thickness field

distributions are a function of this value. An iterative scheme was u.sed Io evaluate these

parameters. For the vibration problem, a necessary and sufficient cumlition [br a non-

trivial solution to exist is that the determinant/3 of the coefficient matrix [A] multiplying

the unknown constants is zero. The [A] matrix contains the final coefficients multiplying

the unknown constants following imposition of all interface and surface conditions and is

written as

[A]{zX}= {0} (2S,5}

where A is the column vector of coefficients. The zero determinant requirement establishes

the necessary relationships for the calculation of the natural frequencies and the modal

shapes for the plate.

To evaluate the roots of the characteristic equation, the following procedure was used.

First, the frequency was stepped through a sequence of frequencies that are an increment

of the lowest expected frequency. This can either be estimated or approximated fi-om

other plate theories. The sign of the determinant is then computed ft,- each value aild

recorded. Once a sufficient number of sign changes have been noted, bisection was used

to refine the values of the true frequencies using the sign-change values as the bounding

initial guesses.

It can be a difficult numerical problem to evaluate the determinant of the matrix as
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it beconiessingular, especiallyif computedon a limited-precision mad,ilu,. In this study,

the determinant ]3 was computed using

fl = [I./==IA_ (286)

where Ai is the i-th eigenvalue of the coefficient matrix [A]. This matrix is square and of

order m, where m=8n and n is the number of layers within the laminate. The eigenvalues

were computed using the QR algorithm in extended precision. Atteml,ts to compuLe the

eigenvalues using the diagonals from an LDU decomposition and QR witll ¢h _ble precision

failed.

Following computation of the frequencies w, the constants corresponding to these

frequencies that define the modal displacements and potential a_'e readily computed by

solving the system of equations with the first constant in _ arbitrarily set to one. The

reduced [A] matrix is no longer singular after this step, and the relative values lot' the

remaining constants can be found. The through-thickness rood,, slmp,,s call then be

calculated using these constants.

Clearly, a different characteristic equation can be generated in d,:t,.'rJninemt form for

each combination of p and q in Eq. 259. These describe the in-plane modal characteristics

of the elastic and electric fields. For each of these equations, there are an infinite num-

ber of eigenvalues corresponding to the through-thickness modes. The' cases of interest

in this study were the thickness modes corresponding to the fundamental in-plane mode

with m=n=l in Eq. 252. Of particular interest is the relationship bel wecn the displace-

ment components and the electrostatic potential, as this information could be used to

electrically excite or sense the various modes of vibration.
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7. NUMERICAL EXAMPLES AND RESULTS

This sectioncontainsresultsof applicationsof the computationaland analytic models

developedaspart of this study. This includes

• Results from laminated piezoelectric plate element.

• Semi-analytic solutions for plates.

• Results of exact solutions for simply-supported plates.

The shell elements were in the process of being tested at the time of writing this report.

Several simple test cases were being studied (simple electric field, unitotnl strain applica-

tion, etc.). One of the difficulties of benchmarking these elements is the lack of solutions

available for laminated piezoelectric shells. Although a proposed area for future study is

development of an exact solution for this class of problem, no suctl solut itJtls ave ctu'rently

available. Because of the preliminary status of the results for the shrill, they were not

included in this report.

The Plate Element

In this section, several examples are investigated in order to test the a.ccuracy, validity,

and range of applicability of the theories presented in section 4. lniuial examples are for

the purely elastic plate, with later examples to include piezoelectric layers.

Simply Supported Cross-Ply Plate Under Sinusoidal loading

A simply supported symmetric cross-ply (0/90/0) laminated rectaagula.r plate under

a sinusoidal transverse distributed load on the uppei" surface is considered. This example

is chosen because it has an elasticity solution developed by Pagano [10] and therefore,

provides an excellent tool to check the level of accuracy of the two theories presented

herein for purely elastic laminates.

Each of the three layers has equal thickness and is idealized as a honaogeneous or-

thotropic material with the following properties:

Ex = 25. 106psi

G23 = 0.2*106psi

E2 = E3 = 1.0 • lO_psi

Gx2 = G13 = 0.5 • 106p_i
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u12 -- uz3 = u13 = 0.25

The domain of the rectangular plate is 0 < x < a , 0 < y < b, and 0 < z < H with

b = 3a. The transverse sinusoidal distributed load is given by:

q(x,y) = qosin(7)si_( _ ) (2s7)

Because of the symmetry of the problem, only a quarter of the plate is modeled

(0 < x < i, 0 < x < _) and the corresponding boundary conditions are given by:

u(x,O,z) = 0

_,(./_,y,z) = o

v(O,y,z) = 0

v(x,b/2, z) = 0

_.(O,y,z) = 0

w(x,O,z) = 0 (2SS)

The deflections and stresses are computed by using two theori_.s. (,t.' considering w

varying linearly through the thickness of the plate and the other ou,_. with w constant

through the thickness. The stresses are determined using the computed displacements

and the constitutive relations 38 and 39, and they are evaluated al the closest gauss

point to the the following locations:

o'.(a/2,b/2,H)

a_(a/2, b]2,H]3)

_'_(O,O,H)

**..(0,b/2,0)

r_(a/2, 0,0) (289)

Regarding the transverse displacement w, it is evaluated at the center of the rectan-

gular plate.

The fortran programs written to compute the deflections and stre_se.s according to the

two theories presented herein were run for four different meshes : a 6x6 litic,tr element mesl,

with 6 and 12 layers in the z-direction and denoted by L6x6-6 and L6x6-12 respectively,

and a 3x3 quadratic element mesh with 6 and 12 layers in the z-dir,_ction and denoted
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Mesh a,h- IIa,h-,10-_ 10-_

LSx6-12(R)

a/h=10
10-_

L6x6-12 (F) 0.64710 0.17956 0.90463

L6x6-12 (FR) 0.65119 0.18103 0.91918
0.65163 0.18128 0.92210

L6x6-6 (F) 0.62983 0.17752 0.90058
L6x6-6 (FR) 0.6 0.17894 0.91494

0.63405 0.179192 0.91786L6x6-6 (R)

Q3x3-12 (F)
Q3x3-12(R)

Q3x3-6(F)
Q3x3:6(R)

0.64553 I[ 0.179680.645700.179699

0.91673

0.177620.17765

0.91695

EXACT

0.62823 0.91255
0.62841 0.91278

0.65327It0.18055 0.91891

Table 1: Transverse Displacements at the Center of

the Thickness

a/h=20 a/h=50
10-4 10-z

0.46290 0.49566

0.48600 0.64715
0.48831 0.65075

0.46212 0.49571
0.48513 0.64688

0.48743 0.65048

0.48660 0.64773

0.48711 0.65024

0.48573 0.64744
0.48625 0.64998

0.48763 0.65060

Plate. w Varyi,,g

a/h:lO0
10-z

0.22721

U.50479
0.50767

0.22719
0.50470

0.50759

0.50256

U.50742

0.50245
0.50733

0.50766

I.incarlv Th rough

by Q3x3-6 and Q3x3-12 respectively. The results are obtained using the full integration

(denoted by F), the reduced integration (denoted by R), and the full iJJtegration lot" the

bending terms and the reduced integration for the shear terms (denot(.d I,v I:R). Tables 1

and 2 shows the non-dimensionalized transverse displacements at the center of the plate

for both theories and for a wide range of thickness/lenght ratio.

The results for the case where a/h--4 are represented in figures 19 through 26

Single Layer of PVDF Under Sinusoidal Load and Sinusoidal Potenlial

A single square layer of PVDF is considered under two types of loads in using the

two theories used in the previous section. First, a transverse sinusoida[ load, q(x,y) =

qosin(_)sin(_) where qo = 1, is applied on the upper surface. Becaus,., of the symmetry

of the problem, only one quarter or the plate is modelled and the boudary conditions used

are as follows (see figure 17):

uCz, O,z) = 0 ; =(a/2,y,z) = 0

,,(0,v,z) = 0 ; ,,(_,b/2,_) = 0

_(o,v,_) = o ; _(x,o,_-) = o

_(x,0,z) = 0 ; _o(0,v,_) = 0

_(z,v,o) = o ; _,(z,v,h) = o

The results for the case where a/h = 10 are represented in figures 27 through 37.
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Mesh

L6x6-12 (R)

a/h=4 a/h-10
I0-_ I0-_

a/h = IO0

10-:

L6x6-12 (F) 0.66942 0.18084 0.90358 0.46131 0.49409 0.22671

L6x6-12 (FR) 0.67351 0.18232 0.91807 0.48423 0.64409 0.50232
0.67421 0.18226 0.92098 0.48652 0.64766 0.50518

L6x_6(R)

L6x6-6 (F) 0.65305 0.17883 0.89952 0.46055 0.49397 0.22670

L6x6-6 (FR) 0.65682 0.18026 0.91383 0.48338 0.64388 0.50228
0.65755 0.18053 0.91674 0.48566 0.64745 0.50513

Q3x3-12 (R)

Q3x3-12 (F) 0.66766 0.18096 0.91557 0.48480 0.64466 0.50013
0.66714 0.18087 0.91571 0.48539 0.64716 0.50,192

Q3x3-6 (R)

Q3x3-6 (F) 0.65126 0.17893 0.91139 0.48396 0.64443 0.50004
0.65072 0.17884 0.91153 0.48447 0.64695 0.50488

0.65327 0.48763EXACT 0.650600.18055 0.91891 0.5766

Table 2: Transverse Displacements at the Center of Plate. w_Constant Through the
Thickness

In the second case when the sinusoidal potential,so(x,y ) = qo.._i,,(_)_in(_) where

¢#0 = 1, is applied to the single layer of PVDF, the boundary conditi,,, are as follows:

u(x,O,z)=O ; u(a/2,y,z)=O

_,(o,y,z)= o ; v(x,b/2,z) = o

_(O,y,_) = o ; _(_,o,_) = o

_,(x,O,z)= o ; _,(o,y,_)= o

_,(_,y,o)=o

The results for this case with aspect ratio equal to 10 ,a/h = 10. a.n. i),'esentefl in in

figures 38 through 48.

Single Layer of PZTg Under Sinusoidal Load and Sinusoidal Potential

A single layer of PZT4 is considered under the same types of loads a.s those examined

with the single layer of PVDF. The geometry is shown in figure 17 with is the same used

for the example on section .The boundary conditions for the two ca scs.sinusoidal load

and sinusoidal potential ,are the same as those in section respectively.

The results for both cases, sinusoidal load load and sinusoidal potcnl ial, arc shown in

figures 49 through 56 and in figures 57 through 64.

Four Layer P VDF/Graphite/Epozy/P VDF laminate

A simple supported square laminate composed of 4 layers, is considcn'd i. this section.
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a/h

10

Mesh

L6x6-12(F)

L6x6-12(FR)
T.6x6-12(R)
L6x6-S(F)

L6x6-6(FR)

L6x6-S(R)

Q3x3-12(F)

Q3x3-12(R)

Q3x3-6(F)

Q3x3-6(R)
EXACT

L6x6-12(F)

L6x6-I2(FR)

L6xS-12(R)

L6x6-6(R)

L6x6-6(FR)

L6x6-6(R)

Q3x3-12(F)

Q3x3-12(R)

Q3x3-6(F)

Q3x3-6(K)
EXACT

L6x6-12(F)
L6x6-12(FR)

L6x6-12(R)

L6x6-6(F)

L6x6-6(FR)

L6x6-6(R)

Q3x3-12(F)

Q3x3-12(R)

Q3x3-6(F)

Q3x3-6(B.)
EXACT

Table 3:

8.0302

8.0747

8.1171

7.1797

7.2519

8.0676

8.0693

7.2169

7.2180

8.5323

17.7195

17.8784

17.9508

17.1557

17.3022

17.3748

17.8687

17.8790

18.3088

70.0011

71.2801

71.6333

69.5283

70.7863

71.1398

71.4377

71.5426

70.9790

71.0574

72.5977

-6.0920 0.8767

-6.1332 0.8849
-6.1494 0.8866

-5.4417 0.8313

-5.4885 0.8403

-6.1373 0.8801

-6.I397 0.8811

-5.4850 0.8350

-548645 0.8354

-6.4962 0.9181

-17.0093 1.6819

-17.1650 1.7038

-17.2284 1.7070

-16.4718 1.6430

-16.6154 1.6642

-16.6793 1.6672

-17.1653 1.6911
-17.1780 1.6948

-16.6279 1.6529

-16.6356 1.6559

-17.5873 1.7405

-69.9408 4.0293

-71.2188 4.1162

-71.5713 4.1301

-69.4711 4.0047

-70.7283 4.0906"

-71.0810 4.1044

-71.3816 4.0872

-71.4925 _4.1117

-70.9259!4.0635

-71.0074 14.0880

-72.539614.1757

Stresses on Cross-Ply.

_y

-1.0261

-0.10341

-1.0373

-0.9899

-1.0003

-1.0324

-1.0334

-0.9964

-0.9970

-1.0709

-1.8451

-1.8670
-1.8719

-1.8087

-1.8299
-1.8346

-1.8574

-1.8611

-1.8218

-1.8244

-1.9086

-4.1974

-4.2843

-4.3000

-4.1732

-4.2591

-4.2748

-4.2585

-4.2821

-4.2351

-4.2585

-4.3490

w varying

-0.2166 0.2112

-0.2183 0.2129

-0.2191 0.2134
-0.2054 0.2021

-0.2075 0.2041]

-0.2179 0.2126
-0.2180 0.212(_ i

-0.2065 0.203-1!

-0.2066 0.203-'t

-0.2255 0.2193

-0.4182 0.4371

-0.4233 0.4421

-0.4242 0.4432

-0.4107 0.4298

-0.4155 0.,13-17
-0.4165 0.4358

-0.4218 0.4407

-0.4220 0.4,107

-0.41,11 0.433;_

-0.4143 0.433,t

-0.4301 0.4490

-1.1556 1.1846

-1.1794 1.2084

-1.1839 1.2133

-1.1491 1.1781

-1.1725 1.2016

-1.1771 1.206,1

-1.1802 1.2093
-1.1806 1.2095

-1.1734 1.2025

-I.1737 1.2027

-1.1977 1.2271

through

_Z

0.5160

0.5066

0.5072
0.4940:

0.4979

0.5049

0.SOSO

0..1956

0.4957

0.5182

1.3785

1.3927

1.394l

1.3756

[.3895

1.3910

1.3865

1.3867
1.3_33

1.3835

1.4076

4.0714

4.1527

4.1535

4.0688

4.1498

4.1506

4.1476

I 4.1486

i 4. 1443
-I. 1454

4.2018

thickness

ry,

0.1229

0.1233

0.1230
0.1063

0.1061

0.1238

0.1238

0.1072

0.1072

0.1272

0.1224

0.1199

0.1196

0.1088

0.1060

0.1058

0.1263

0.1263
0.1126

0.1126

0.1291

0.1246

0.1014

0.1013

0.1126

0.0892

0.0891

0.1466

0.1471

0.1341

0.1347

0.1490
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I a/h I Mesh
L6x6-12(F)

"'L6x6-12(FR)
"'L6x6-12(R)
L6x6-6(F)

20 L6x6-6(FR)

L6x6-6(R)

Q3x3-12(F)

Q3x3-12(R)

Q3x3-6(F)

Q3x3-6(a)
EXACT

L6x6-12(F)

L6x6-12(FR)

L6x6-12(R)

L6x6-6(F)

50 L6x6-6(FR)

L6x6-6(R)

.Q3x3-12(F)
Q3x3-12(R)

Q3x3-6(F)

Q3x3-6(R)

I EXACT

L6x6-12(F)

L6x6-12(FR)
L6x6-12(R)

L6x6-6(F)

100 56x6-6(FR)

L6x6-6(R)

Q3x3-12(F)
Q3x3-12(R)

Q3x3-6(F)

Q3x3-6(R)
EXACT

Table 4:

0.2421

0.2553

0.2567

0.2418

0.2548

0.2563

0.2559

0.2567

0.2556

0.2562

0.2600

1.1741

1.5405

1.5493

1.1740

1.5440

1.5492

1.5373

1.5497

1.5374

1.5496

1.5690

2.7435

6.1300

6.1651

2.7446

6.1312

6.1664

6.0621

8.1668

6.0634

6.1681

6.2435

-0.2422 0.1102

-0.2553 0.1164

-0.2567 0.1169

-0.2418 0.1105

-0.2549 0.1167

-0.2563 0.1173

-0.2560 0.1155

-0.2567 0.1167

-0.2556 0.1157

-0.2563 0.1171

-0.2601 0.1178

-1.1740 0.4864

-1.5406 0.6387

-1.5493 0.6421

-1.1741 0.4998

-1.5405 0.6431

-1.5493 0.6466

-1.5374 0.6314

-1.5498 0.6417

-1.5375 0.6358

-1.5497 0.6461

-1.5691 0.6457

-2.7436 1.1199

-6.1301 2.5033

-6.1652 2.5173

-2.7446 1.1285

-6.1313 2.5223

-6.1665 2.5365

-6.0622 2.4590

-6.1669 2.5175

-6.0635 2.4778

-6.1682 2.5366

-6.2436 2.5308

-0.1119

-0.1181

-0.1186

-0.1122

,0.3442

-0.3632

-0.3651

-0.3435

-0.1184 -0.3625

-0.1190 -0.3644

0.3472 I 0.8049 0.1187
0.3662 I 0.8407 0.0165

0.3682 t 0.8,106 0.0173

0.346_; I u.8040 0.1029
0.365610.8397 0.0332

0.3675 i 0.8396 0.0340
-0.I172 -0.3646

-0.3648-0.1184

-0.1175

-0.1188

-0.1195

-0.3639

-0.6331

-0.3641

-0.3696

0.3676 i 0.8575 I 0.2314
0.367_ ' U.8577 I 0.2331
0.36ti!, L}.g565 [ 0.2135

0.3671 7 i)._5d6 I 0.2158
0.3727 iJ.Oi86 I 0.2344

-0.4881 -0.1577 0.1580 ; 1.5278 [

-0.6404 -0.2070 0.2073 i 1.79911
-0.6439 -0.2082 0.2085

-0.4915 -0.1577 0.158[)

-0.6448 -0.2069 0.2073

-0.6483 -0.2081 0.2084

-0.2076

-0.2082-0.6434

-0.6375 -0.2075 0.2078 i 2. 1696

-0.6479 -0.2081 0.5(185 : " I62-1

-0.6475 -0.2109

_ 1.7969
_ 1.5_57

11.7962

i 1.7939

0.207{)!2.1727 [0.5277

0.2085 i _.1{i54 I 0.5395
0.4888

!o.5o14

-1.1216 -0.3653

-2.5050 -0.8166 0.816_ : 1.288i
-2.5100 -0.8212 0.8215 I 1.2702

-1.1302 -0.3653

-2.5240 -0.8164

-2.5382 -0.8211

-2.4607 -0.8146

-2.5192 -0.8214

-2.4795 -0.8144

-2.5383 -0.8213

-2.5326 -0.8319

0.211"-' . ".1.927 ]0.5393

0.36571 1.2.t75

0.3656 ] 1.35650.8167 1.2825

0.821,1 I 1.26,16

0.81,19 I -1.39950.8217 ,1.3383

0.8147 i4.3936
-I.33200.82161

0.8322' ' I.:l!)l(i

1.0025

1.0709

0.9265

0.9975

1.0652

Stresses on Cross-Ply. w varying through thick,,{:.s.s
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a/h

10

Mesh

L6x6-12(F)
L6x6-12(FR)

L6x6-12(R)

L6x6-6(F)

L6x6-6(FR)

L6x6-6(R)

Q3x3-12(F)

Q3x3-12(PQ

Q3x3-6(F)

Q3x3-S(R)
EXACT

L6x6-12(F)
L6x6-12(FR)

L6x6-12(R)

LSx -6(R)
L6x6-6(FR)

L6x6-6(R)
Q3x3-12(F)

Q3x3-12(R)

Q3x3-6(F)

Q3x3-6(R)
EXACT

LGx6-12(F)

L6x6-12(FR,)

L6x6-12(F)
L6x6-6(F)

L6x6-6(FR)

L6x6-6(R)

Q3x3-12(F)

Q3x3-12(R)

Q3x3-6(F)

Q3x3-6(R)
EXACT

6.8657

6.9080

6.9345

6.1660
6.1960

6.2231

6.9088

6.9116

6.2077
6.2092

1.62

17.3295

17.4866

17.5540

16.7843

16.9292

16.9970

17.4836

17.4963

16.9386

16.9462

1.10

70.0028

71.2805

71.6336

69.5053

70.7613

71.1144

71.4394

71.5489

70.9549

71.0357

0.725

_z

-6.8657
-6.9080

-6.9345

-6.1660

-6.1960

-6.2231

-6.9088

-6.9116

-6.2077

-6.2092

2.13

-17.3295

17.4866

-17.5540

-16.7843

-16.9292

-16.9970

-17.4836

-17.4963

-16.9386

-16.9462

1.14

-70.0028

-71.2805

-71.6336

-69.5053

-70.7613

-71.1144

-71.4394

-71.5489

-70.9549

-71.0357

0.726

_y

0.9860 -0.9860

0.9945 -0.9945

0.9972 -0.9972

0.9588 -0.9588

0.9667 -0.9667

0.9694 -0.9694

0.9909 -0.9909

0.9917 -0.9917

0.9638 -0.9638

0.9643 -0.9643

0,268 0.230

1.7392 -1.7392

1.7610 -1.7610

1.7647 -1.7647

1.7173 -1.7173

1.7385 -1.7385

1.7422 -1.7422

1.7499 -1.7499

1.7528 -1.7528

1.7287 -1.7287

1.7310 -1.7310

0.119 I 0.109

4.0930 -4.0930

4.1794 -4.1794

4.1940 -4.1940

4.0728 -4.0728

4.1582 -4.1582

4.1729 -4.1729

4.1527 -4.1527

4.1751 [-4.1751

4.1331-4.1331

4.1557:-4.1557

0.0435 0.0418

Table 5: Stresses on Cross-Ply.

ez

-0.2220 0.2220

-0.2238 0.2238

-0.2244 0.2244

-0.2120 0.2120

-0.2136 0.213{3

-0.2142 0.2142

-0.2233 0.2233

-0.2233 0.2233

-0.2132 0.2137

-0.2132 0.21:12

0.0548 0.0561

-0.430710.4307
-0.435710.4357
-0.4368 0.4368

-0.4233 0.4233

-0.4282 0.4282

-0.4292 0.4292

-0.4342 0.4342
-0.4343 0.4343

-0.4268 0.4268

-0.4268 0.4266

0.0281 0.0259

-1.1682 1.1685

-1.1919 1.1919

-1.1966 1.1966

-1.1617 1.1617

-1.1851 1.1851

-1.1898 1.1898
:I.1927 1.1927

-1.1930 1.1930
-1.1859 1.1859

-1.1862 1.1862

0.0123 0.0120

w constant

_z

0.5082

0.5115

0.5122

0.4957

0.4987

0.4995

0.5099 l

U.5099 i
0.4974

O.4974

U._57

1.3764
1.3905

1.3919

1.3711

1.3849

1.3863

1.3844

1.3846

1.3789

1.3791

0.351

4.0584

4.1496

4.1504

4.0647
4.1456

4.1464

4.1,I,16

4.1456

4.1402

4.1413

0.420

0.1205

0.1209

0.1205

0.1071

0.1072

0.1069

0.1215

0.1217

0.1081

0.1083

0.0668

0.1186
0.1160

0.1156

0.1070

0.1041

0.1038

0.1225

0.1229

0.1109

0.1113

0.0334

0.1266

0.1036

0.1034

0.1154
0.0920

0.0920

0.1,187

0.1496

0.1370

0.1379

0.0152
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]a/h I Mesh
L6x6-12(F) 0.2421
L6x6-12(FR) 0.2552

L6x6-12(R) 0.2566

L6x6-6(F) 0.2417

20 "L6xT-6(FR) 0.2547

L6x6-6(R) 0.2561

Q3x3-12(F) 0.2558
Q3x3-12(R) 0.2566

Q3x3-6(F) 0.2554

Q3x3-6(R) 0.2561
EXACT 0.2600

-0.2421 0.1121

-0.2552 0.1183

-0.2566 0.1189

-0.2417 0.1120

-0.2547 0.1181

-0.2561 0.1187

-0.2558 .0.1175

-0.2566 0.1187

-0.2554 10.1173

-0.2561 ! 0.1185

-0.2601 ] 0.1178

-0.1121

-0.1183

-0.1189

-0.1120

-0.1181

-0.1187

-0.1175

-0.1187

-0.1173

-0.1185

-0.1195

-0.3444 0.3444 U.8048 0.1276

-0.3633 0.3633 0.8406 0.0066

-0.3652 0.3652 0.8382 0.0073
-0.3438 0.3438' 0.8039 0.1117

-0.3626 0.3625 0.8395 0.0232
-0.3645 0.3645 0.8394 0.0239

-0.3637 0.36,17 (I.8573 0.2403

-0.36,19 0.36.19 0.857,1 0.2422
-0.35-10 0.36.1U {I.8562 0.2228

-0.3642 0.35,12 i).8563 0.2250

-0.3696 0.3727 0.86S6 0.2344

L6x6-12(F) 1.1745 -i.1745 10.4961

L6x6-12(FR) 1.5394 -1.5394 0.6504

L6x6-12(K) 1.5482 -1.5482 0.6540

L6x6-6(F) 1.1742 -1.1742 0.4960

50 L6x6-6(FR) 1.5389 -1.5389

L6x6-6(R) 1.5477 -1.5477

Q3x3-12(F) 1.5363 -1.5363

Q3x_12(R) 1.5485 -1.5485

Q3x_6(F) 1.5359 -1.5359

Q3x3-6(R) 1.5480 -1.5480
EXACT 1.5690 -1.5691

0.6502

0.6538

0.6432

0.6534

0.6429

-0.4961 -0.1573
-0.6504 -0.2062

-0.6540 -0.2074

-0.4960 -0.1573

-0.2061

-0.2073

-0.6502

-0.6538

-0.6432

-0.6534

-0.6429

0.6533 -0.6533

0.6458 -0.6475

-0.2068
-0.2074

-0.2067

-0.2073
-o._1o9

0.1573 1.5298

0.2062 1.6006

0.207,1 1.7984

0.1573 1.5276

0.2061 1.7975

0.2073 1.7953

0.2068 2.1724 0.5536

0.207-1 2.1650 0.5655

0.2067 2.1697 0.5139

0.2073 2.1619 015265

0.2112 2.1927 0.5393

I00

L6x6-12(F)

L6x6-12(FR)

L6x6-12(It)

L6x6-f(F)

L6x6-6(FR)

L6x6-6(R)

Q3x3-12(F)

Q3x3-12(R) 6.1819
Q3x3-6(F) 6.0573

-Q3x3-S(R) 6.1617
EXACT 6.2435

2.7489 -2.7489

6.1254 -6.1254

6.1604 -6.1604

2.7489 -2.7489

6.1249

6.1599

6.0577

1.1443 -1.1443

2.5499 -2.5499

2.5644 -2.5644

1.1442 -1.1442

-6.1249 2.5497 -2.5497

-6.1599 2.5642 -2.5642

-6.0577 2.5056 -2.5056

-6.1619 2.5642 -2.5642

-6.0573 2.5052 -2.5053

-6.1614 2.5639 -2.5640
-6.2436 2.5308 -2.5326

-0.36,17 0.36-17 I 1.365_
-o.8127 o.81_7 _1.302_
-0.8173 0.8173 t.2849

-0.3647 0.3647 1.3625
-0.8126 0.8125 1.2966

-0.8173 0.8173 1.2789

-0.8107 0.8107 .t.3986 1.0551

-0.8175 0.8175 1.3376 1.1238

-0.8107 0.8106 1:3925 0.9772

-0.8174 0.817,1 -I.3311 1.0485

-0.8319 0.8322 --1.3917 1.0652

Table 6: Stresses on Cross-Ply.w constant
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1.0000
0.9667
0.9333
0.9000
0.9000
0.7667
0.6333
0.6333
0.5000
0.3667
0.3667
0.2333
0.1000

0.1000

0.0667

0.0333

0.0000

u * I0- lo

Exact Variable W Constant W Exact Variable W Constant W

-0.530075 -0.524338 -0.537309 0.000000 0.000000 0.000000
-0.441401 -0.436096 -0.454397 0.009646 0.009699 0.002594
-0.371682 -0.366761 -0.390129 0.018931 0.019036 0.004859

-0.318131 -0.313540 -0.341897 0.027862 0.028021 0.006856
-0.318131 -0.313540 -0.341897 0.027862 0.028021 0.006856
-0.202195 -0.198911 -0.240958 0.023203 0.023310 0.006476

-0.124831 -0.122843 -0.163878 0.019096 0.19158 0.006252
-0.124831 -0.122843 -0.163878 0.019096 0.19158 0.006252
0.036839 0.037103 0.000000 0.015443 0.015466 0.006177
0.199435 0.198031 0.163878 0.012160 0.012145 0.006252
0.199435 0.198031 0.163878 0.012160 0.012145 0.006252
0.273535 0.270900 0.240958 0.009165 0.009115 0.006476
0.361385 0.357215 0.341897 0.006388 0.006304 0.006856
0.361385 0.357215 0.341897 0.006388 0.006304 0.006856
0.405321 0.400719 0.390129 0.004599 0.004543 0.004859
0.465517 0.460434 0.454397 0.002469 0.0024,10 0.002594
0.544384 0.538772 0.537309 0.000000 0.000000 0.000000

Table 7: Inplane displacement and electrostatic polt'x,t idl

The laminate is constructed with the upper and lower layers composed of" polyvinylidene

fluoride, PVDF, oriented at 0 degrees, and with the internal two layers composed of

a cross-ply of graphite-epoxy oriented at 0, and 90 degrees , respecuively [0/90]. The

geometry of the laminate is shown in figure 18. In this example, two loading cases are

considered. In the first case, the sinusoidal load is applied to the top sul['a.ce with the the

top and bottom surfaces and the vertical edges of the laminate grou,d,.d. ILLthe second

case, te sinusoidal potential is applied to the top surface of the laminat(_ with the bottom

surface grounded.

The results for the case I/h = 4 are presented on tables 7 through 9 for the+ case in

which the sinusoidal load is applied, and on tables 10 through 12 for the case when the

sinusoidal potential is applied.

Semi-Analytic Solutions

Of primary interest in this section is the basic behaivor of the di_ldacement,, stress,

electrostatic potential, and electric displacement of a laminate with e.lul,cdded piezoelec-

tric layers. Both the varlable-w and constant-w cases are examined below for the static

behavior, with the added theory of the independent-w approximatiol_ studied for the

dynamic case.
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Z

1,0000

0,9667

0:9333

0.9000

0.9000

0.7667

0.6333
o:6333
0.5000

0.3667

0.3667

0.2333

0.1000

0.1000

0.0667

0.0333

0.0000

a= "/'_y

Exact Variable W Constant W Exact Variab|eW Constant W

10.33504 i0.04129 10.10107 -0.659511 -0.639464 _0.650112

8.652445 8.395070 8.552297 -0.567147 -0.549237 -0.564983
7.324507 7.098908 7.347798 -0.489060 -0.472978 -0.493142

6.299222 6.099411 6.440052 -0.423323 -0.408792 -0.432799

0.855399 0.854236 0.589416 -0.372215 -0.359438 -0.380547

0.638399 0.616228 0.368611 -0.193170 -0.185308 -0.216892

0.449534 0.453350 0.205646 -0.067341 -0.063584 -0.098115

1.553872 1.492791 1.727943 -0.067341 -0.063584 -0.098115
-0.213979 --0.210662 0.00000 0.034551 0.034255 0.000000

-1.988776 -1.919539 -1.727943 0.131542 0.127279 0.098115

-0.030955 -0.037756 -0.205646 0.131542 0.127279 0.098115

-0.212196 -0.193350 -0.368611 0.247282 0.239053 0,216892

-0.400353 -0.394469 -0.589416 0.403180 0.390294 0.3895.17

-6.686350 -6.44052 0.458540-6.892361 0.44388,t

0.668041

0.432799

-7.736448 -7.505797 -7.347798 0.516071 0.,199933 0.493142

-8.884439 -8.623567 -8.552297 0.585343 0.567453 0.564983
-10.38138 -10.08549 -10.10107 0.648098 0.650112

Inplane stress distributionTable 8:

I Z

0.9833
0.9500
o.9167
0.8333

0.7000

0.5667

0.4333

0.3000

0.1667

0.0833

0.0500

0.0167

"r_z
D,* 10 -I

Exact Variable W Constant W Exact Variabh, W ! ("ousl,,utW
0.030842 0.027313 0.025778 -0.126731 -0.120614 -0.U|9162

0.086931 0.082322 0.077648 -0.i20156 -0.114803 -0.016218

0.136315 0.130711 0.123182 -0.107478 -0.102818 -0.010268

0.435957 0.410734 0.405381 -0.092683 -0.092463 -0.007448

0.750776 0.726830 0.736019 -0.081694 -0.081487 -0.004399

0.831595 0.817600 0.827206 -0.072650 -0:072465 -0.001452

0.849577 0.835698 0.827206 -0.065336 -0.065183 0.001452

0.766156 0.743298 0.736019 -0.059577 -0.059464 0.004399'

0.426790 0.403100 0.405381 -0.055236 -0.055172 0.007448

0.126715 0.121428 0.123182 -0.049454 -0.053851 0.010268
0.080648 0.076351 0.077648 -0.043180 -0.048213 0.016218

0.028558 0.025335 0.025778 -0.039831 -0.045558 0.019162

|

Table 9: Transverse shear stress and electric displace..:tLt
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I z

1.0000

0.9667
0.9333

0.9000

0.9000

0.7667

0.6333

0.6333

0.5000

0.3667

0.3667

0.2333

0.1000

0.1000

0.0677

0.0333

0.0000

Exact

-0.464016

-0.750174

-1.093318
-1.505134

-1.505134

-1.016508

-0.609389

-0.609389

"r_&

Variable W

-0.454333

-0.740068

-I.082760

-1.494176

-1.494176

-1.006818

-0.600110

-0.600110

Constant W

-0.274944

-0.776016

-1.229627

-1.661744

-1.661744

-1.105801

-0.660315

-0.660315

Exact

1.000000

0.985118

0.971528

0.959215

0.959215

0.770200

0.599521

0.599521

D, * I0-ll

Variable W

1.000000

0.985081
0.971463

0.959128

0.959128

0.769887

0.599117

0.599117

Constant W

1.000000

0.984102

0.969594
0.956455

0.956455

0.767967

0.597904

0.597904
-0.364444 -0.356267 -0.399691 0.443115 0.442720 0.442186

-0.234489 -0.228002 -0.268975 0.297258 0.296946 0.297076

-0.234489 -0.228002 -0.268975 0.297258 0.296946 0.297076

-0.244599 -0.239503 -0.298538 0.158478 0.158295 0.159094

-0.283474 -0.279194 -0.363899 0.023471 0.023443 0.024929

-0.283474 -0.279194 -0.363899 0.023471 0.023443 0.024929

-0.311356 -0.307364 -0.371325 0.015630 0.015611 0.016599

-0.367545 -0.363802 -0.351645 0.007809 0.007800 0.008294
-0.454328 -0.450824 -0.304332 0.000000 0.000000. 0.000000

Table 10: Inplane displacement and electrostatic potential

z

1.0000

0.9667
0.9333

0.9000

0.9000

0.7667

0.6333

0.6333

0.5000

0.3667

0.3667

0.2333

0.1000

0.1000

0.0667

0.0333

0.0000

_=,10 -1 rr_* 10-3

Exact Exact Variable W CoustantW

-0.252476 0.061703 0.078828 -0.197721

-0.168379 -0.508764 -0.480931 -0.572105

-0.074172 -1.072601 -1.033926 -1.223532

0.032380 -1.643345 -1.593534 -1.783186

0.017152 -1.444943 -1.401145 -l.567900

0.012998 -0.941803 -0.908786 -1.007435

0.009345 -0.616103 -0.590772 -0.656807

0.067112 -0.616103 -0.590772 -0.656807

0.041152 -0.436790 -0.416920 -0.469842

0.027072 -0.330848 -0.314971 -0.363867

0.005157 -0.330848 -0.314971 -0.363867

0.004410 -0.303844 -0.289910 -0.346856

0.003844 -0.346085 -0.332338 -0.410615

-0.393606

-0.500968

Variable W Constant W

-0.238020 -0.307042

-0.169224 -0.196349

-0.076568 -0.079646

0.014740 -0.017074

0.018635 0.026079

0.012217 0.017026

0.007959 0.010671

0.065187 0.072009

0.039400 0.044246

0.025825 0.030211

0.004695 0.005225

0.004098 0.005279

0.004317 0.006324

-0.115099 -0.117675

-0.109214 -0.115478

-0.098185 -0.118428

-0,081793 -0.127015

-0.I16128

-0.109948

-0.098760

-0.377970

-0.483674

-0.466996

-0.562701

-0.605557 -0.586605 -0.595639

-0.082135 -0.709345 -0.688722 -0.566045

Table 11: Inplane stress distribution
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0.9833
0.9500
0.9167
0,8333
0.7OO0
0.5667
o.4333
0.3000
0.1667
0.0833
0.0500
0.0167

rV:* 10.3

0.242057

D= * i0-1o

0,241098 0.279375 -0.265690

Exact Variable W Constant W Exact Variab]eW Constant W
-0.540721 -0.497105 -0.568975 -0.506163 -0.500145 -0498431

-1.510913 -1.455750 -1.668638 -0.462265 -0.456622 -0.454952
-2.336173 -2.270831 -2.602503 -0.418973 -0.413703 -0.412115
-1.757666 -1.768708 -2.025278 -0.376004 -0.371419 -0.369941
-0.398307 -0.407344 -0.474639 -0.339528 -0.335167 -0.333779
0_194760 0.192967 0.205508 -0.311136 -0.306955 -0.305625
0.330157 0.324822 0.354593 -0.290150 -0.286109 -0.284803
0.677038 0.660715 0.739205 -0,276072 -0,272126 -0.270814

1.211837 1.192111 1.364158 -0.268567 -0.264672 -0.263323
1.236155 1,218844 1.410369 -0.266737 -0,262607_ -0.261199
0.733438 0.724337 0.841775 -0.266039 -0.261917 -0.260464

-0.261570 -0.260096

Table 12: Transverse shear stress and electric desplacement

Quasi-static response

In this section, the static response of" piezoelectric laminates is studi,:d and compared

with the exact three-dimensional solution. Two different types of loading are considered.

The first is an applied sinusoidal transverse load of the form

r,z r,y (290)F(x,y) =/osin  sin

where fo is the peak intensity of the load at the center of the plate. This could simulate

the sensory characteristics of a laminate by determining the behavior ol' the electric field

as a function of loading. The second type of loading simulates the active response of

a laminate under a sinusoidal surface potential similar in nature to that described in

Equation 287 except that now fo is the peak potential at the plate center. Both of these

cases have exact solutions [87] and demonstrate not only the fundamental behavior of the

laminate but also the accuracy of the discrete-layer approach as a funct.iem of the number

of layers used within the laminate.

Two geometries are used in this example: a single layer of PZT-4 and a 5-ply hybrid

laminate. The 5-ply laminate geometry consists of a symmetric [0/90/0] cross-ply of an

elastic, orthotropic plate with the material properties Cll = 134.9 (all in GPa), C22 =

14.35, C33 = 14.35, C12 = 5.156, C13 = 5.156. C23 = 7.133, C44 = 3.606, Css = 5.654, Ce_

= 5.654, ell/Co = 3.5, e22/_o = e_/eo = 3.0. These three layers are all of equal thickness.

Two layers of the piezoceramic material PZT-4 of equal thickness arc b,,,tdt,d to the upper
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and lower surfaces of the laminate. The total laminate thickness is defined as h, with the

thickness of each of the piezoelectric layers taken as 0.1h. The plate is square, with the

length/thickness ratio of the plate specified as 4.

The boundary conditions along the vertical edges are those consisteat with the func-

tions described in Equation 25. Hence along an edge the transverse and tangential dis-

placements are zero as are the normal stress and electrostatic potential. The top and

bottom surfaces of the laminate are grounded for the transverse load case, with the bot-

tom of the laminate stress-free. For the sinusoidal unit potential, the bottom surface of

the laminate is grounded with the upper and lower surfaces of the laminate stress-free.

Three different discretizations are used in the thickness direction of the laminate. Each

of the laminae are divided into 1, 2, and 4 layers with linear interpol_lio_ls used within

each layer. Hence the total laminate is divided into 5, 10, and 20 let_'_:_'s. The in-plane

functions are selected to coincide exactly with the distributions givel, in Equation 25,

which also match the forms for the exact solutions:

The through-thickness distributions of u, w, ¢, ay, cr,,r_z, and D_ are shown in Figures

65-80 for the single layer of PZT-4 using a 12 layer discretization. This example clearly

demonstrates the poor behavior of the constant-w theory and the excellent agreement

with the variable-w theory.

The results for the 5-ply laminate in Figures 81-102. The in-plane displacements for

both applied load an potential contain distinct breaks in slope at the interface locations.

This is especially true for the applied potential, for which the displacement gradient in

the PZT layer is very high compared to the other layers. The transverse displacement

w also has a highly non-uniform behavior over the thickness of the laminate. These

distributions indicate that even for a relatively simple lamination scheme, the assumption

of linear global behavior for the displacements or potential would b_._ highly detrimental

for a plate of this thickness. Also of note are the excellent results obtained using the

minimal number of discrete-layers through the thickness. Even the 5-layer approximation

(one layer per laminae) provides excellent results for all field distributions. The stress

variables in this case are computed at the sub-layer centroids using the constitutive laws

for the material. The worst agreement for the 5-layer case is the transverse displacement

for the applied potential loading, for which the values differ from the exact solution by

about seven percent. This also influences the az and r_z stress distrib_tions. All other

values are in very good agreement for both load cases.
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The distribution of the normal componentof electric displacementis fairly uniform

through the thicknessof the cross-plyby changesdramaticlly within the piezoelectric

layersbecauseof the electromagneticcoupling. Assuminglinear material behavior, this

behavior could be usedto model the laminate responsein a sensoryfashionfor the case

of the applied loading.

Dynamic Analysis

Exact solutions for the free-vibration of simply-supported piezoelectric plates are avail-

able [89], and provide a good benchmark for comparative purposes. The primary quanti-

ties of interest are the resonant frequencies and the through-thickness modal distributions

corresponding to these frequencies. Two sets of boundary conditions are considered in

this analysis. In the first, the top and bottom surfaces are grounded during the vibra-

tion. In the second, the electric displacement on these surfaces are zero. These cases are

termed closed-circuit and open-circuit, respectively. The fundamental in-plane mode with

m=n=l is the focus of this example.

A square plate composed of a single layer of the piezoceramic PZT-4 is considered

first. The length of each side is taken as L: = Ly = a. The height is taken as h, and three

a/h ratios are studied: 4, 10, and 50. The fundamental through-thickness frequency is

of most interest, and is given as a function of the number of layers u_ed to describe the

piezoelectric layer. The results are shown in Table 13. The frequencies are represented in

the tables in terms of the parameter w hip.

A second plate is composed of two dissimilar piezoelectric ma.tcri,l._ modeled after

PZT-4 [68] and PVDF [16]. The densities of the two materials are taken to be the same.

A three-ply laminate is constructed with the configuration [PZT/PVDF/PZT], with the

PVDF layer oriented at 0 degrees. The thickness of each PZT layer is 0.25h. Both open

and closed circuit conditions are considered, with the length/thickness ratios of 4 and 50

studied. The convergence of the first six modes as a function of a number of sub-layers is

shown and compared with the exact frequencies in Table 14. For both of these examples,

it is clear that even a small number of layers yields frequencies accurate well within several

percent.

A final example is a 5-ply laminate identical to that considered in the static analysis

in the previous sub-section. The first six thickness mode frequencies are listed in Table

15, and are again very accurate with respect to the exact solution. The mode shapes can
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alsobe easilycalculated,and exhibit trends similar to the static examplein terms of the

convergence.The through-thickness distributions of the displacements and potential for

the closed-circuit boundary conditions can be easily computed for a/h=4 and a/h=50.

The plots are indistinguishable from those generated using the exact solution, and are

given in the next section.

Exact Solution

Although both the static and dynamic cases have been investigated, the dynamic case

is of most interest and can be obtained as a special case of the static solution with w =

0. The focus of the results in this report is for the dynamic case.

In all cases studied, the plates are square with simply supported edges and L_ = L_ =

a. The plate surfaces are assumed to be traction-free unless otherwise noted. Although

other surface conditions can easily be considered along with rectangular plate geometries,

these were selected for simplicity. Two sets of electric boundary conditions are typically

applied: homogeneous potential or homogeneous electric displacement. The frequencies

for these examples are expressed in terms of the frequency parameter "1 = wh/v/-fi, where

a., is the initial frequency in radians per second.

The frequencies were determined using bisection with the bounding guesse_ determined

two different ways. In the first, the frequency was stepped in increments of one percent of

the elastic plate frequency neglecting the electromechanical coupling and using classical

lamination theory [88]. At locations where the determinant changed sign, bisection was

used to refine the roots to the required accuracy. A second method used as a check was the

discrete-layer theory developed by the authors [89], which is extremely accurate and gave

excellent estimates for the exact values of the frequencies. For the most part, these two

different sets were in very good agreement. The only exceptions existed in the stepping

method where there could be sign change in determinant and convergence obtained for

a frequency, but there was no analogous root predicted by the discrete-layer theory. In

these cases, the resulting exact eigenfunctions did not satisfy the appropriate interface

and boundary conditions. The source of this anomaly is unknown. Such modes and their

frequencies are not included in the results that follow.

The Piezoelectric Single Layer

A single homogeneous layer of a piezoceramic is considered first. This problem is useful

to demonstrate the nature of the thickness modes and to partially demonstrate the influ-
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enceof aspect ratio and the electric boundary conditions. The mat,:,i_,l propertiesused

here,selectedto modelPZT-4, areshownin the Table A1 in the Appeiidix alongwith the

propertiesfor all materialsusedin this study. The material usedhereis material 2. Four

thickness (a/h) ratios were considered: 1, 4, 10, and 50. The frequencies corresponding

to the first six thickness modes are shown in Table 16 for both _b=0 and D,=0 conditions,

which are referred to as cases I and II, respectively. It is clear from these results that as

the aspect ratio decreases (thick plates), the influence of the electric boundary conditions

becomes more pronounced, with the homogeneous electric displacenw_,t providing higher

frequencies for all cases.

The mode shapes corresponding to the frequencies of vibration are also of significant

interest, as these describe the nature of the motion and the extent of electrornechanical

coupling. The three displacement components are normalized with re._pect to the largest

t "_ .lvalue of u, v, or w through the thickness for a particular mode. 1_h_. potential was also

normalized with respect to its largest value as well for plotting purposes. A scaling factor

c_ was used to denote the relationship between the potential and the _li._placernents. This

value is the magnitude of the potential at the middle surface of the pi_,.te (z=0) divided

by the u displacement component at the top of the plate (z=h/2). If tile potential is zero

at the mid-surface, the location used for the computed scale factor is at z=0.25h. This is

noted in the table by placing parentheses around the value.

The first mode for this laminate is the so-called flexural mode. It is distinguished

by the symmetric distributions for the transverse displacement and potential and the

antisymmetric distribution of in-plane displacement. As the thickm._s ratio increases,

the in-plane displacements become more linear and the transverse displacement becomes

more uniform. The second mode is a purely extensional mode with the eigenfunctions

described by u(z) --" -v(z) - 1, w(z) = qS(z) = 0. There is no electromechanical coupling

in this mode, and the same frequency is obtained for both case I _uid case II surface

conditions. The third mode yields displacement functions that tend toward u(z) = v(z)

= 1 and w(z) = 0 as the plate becomes thin. The in-plane functions are symmetric and

the transverse displacement is antisymmetric. The potential distribution changes little

relative to the aspect ratio. The fourth mode is also purely elastic with no coupling and

is the first thickness shear mode. This is distinguished by in-plane displacement functions

given by u(z) = -v(z) = sin _rz/h and zero transverse displacement and potential. These

modes demonstrate the deviations in the displacement and electrost_,tic potential from
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the kinematic assumptionsof somesimplified laminate theories(linear u, v, and ¢ and

constantw) asthe plate a/h ratio decreases.

In general,the modesfor the two typesof electric boundary ccmditionhavesimilar

features. The featurescan changedependingon the electric boundary conditions. For

example,for a/h= 1 the secondthicknessshearmodecorrespondsto mode6 (caseI) and

mode5 (case2). This modehas featuressimilar to the first thickness-shearmodeexcept

u(z) =-v(z) = sin 3zrz/h.

Three-ply Symmetric Laminate

A second example is a laminate composed of two dissimilar materials with a mismatch

in both elastic and electric properties. The materials, denoted as t and :2. _tt_:_adapted from

the properties of the transversely isotropic PZT-4 and the orthotropic PVDF. Two aspect

ratios of 4 and 50 are considered, with both types of electric boundary conditions, I and

II, considered. Two lamination schemes are studied. The first has the layup of [1/2/2/1],

and the second [2/1/1/2], where the numbers indicate the piezoelectric material. Each

layer has equal thickness of 0.25h. The frequency parameters are showtl in Table 17. In

this case, there are no cases for which the elastic and electric fields ulmouple. It is also

not possible to classify these modes as pure shear or extension b_cau._,' t,[' Lltc dissimilar

materials.

Plots of the first six through-thickness modes for [1/2/2/1] are shown in Figures 103-

114 for the two aspect ratios. It is clear from these plots that the influence of the dissimilar

properties on the displacements and the potential decreases as the aspect ratio increases.

It is also clear that even for thin laminates the modal potential cannot be accurately

represented by a simple linear function through the laminate thickness. This requires

specific attention in constructing approximate solutions to this cla_s ,,t IJ,_Jble',ll.

Hybrid Composite Laminate

In many structural applications, several layers of piezoelectric material are bonded to

a substructure of elastic 6omposite plies. This type of configuration is considered here,

with single layers of piezoceramic material PZT (material 2) bonded to the upper and

lower faces of an elastic, symmetric cross-ply. The 5-ply laminate [PZT/O/90/O/PZT] is

considered, with the cross-plies formed by a composite material and denoted as material

3 in Table A1.

The natural frequencies for case I and II electric boundary conditions are shown in
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Table 18. The through-thicknessdisplacementand potential functions arepresentedfor

the first (flexural) mode in Figures 115-116 for a/h=4 and a/h=.50. The line definitions

are given by u (solid), v (dash-dot), w (dash), and the potential (dot). In addition,

representative plots of the intralaminar (o'x, a2, o'6) and interlaminar (_z3, a4, 0"5) stress

components and transverse electric dispIacement (Dz) are also given for the same mode

in Figures 117-120, respectively, Here the lines are o', (solid), a_ (dash), a,_ (dot) in

Figures 117-118 and _rz (solid), r,z (dash), rub (dot) and D. (dash-dot) in Figures tt9-

120 for both two thickness ratios. As the plate becomes thin, the in-pbme displacements

tend to the same distribution, with the transverse displacement tending to a constant

through-thickness value. Also, the in-plane stresses tend to become more linear, with the

transverse normal stress decreasing in relative magnitude as expected.

Single-layer PZT-4: Independent-w theomj

The final example of this report contains perh_qJs the most imlJ_,rt _,t_t ,'xaz,q_h' of _his

study, and provides an example of the theory constructed to combat t[,: prior l_erfotruauce

of t_he constant,w theory described in earlier sections. By allowing a transverse normal

strain that is still less computationally intensive than the total variable-w theory, the

actuation strain can be captured to yield results that are much closer to reality than the

constant-w case.

As a simple demonstration, the closed-circuit free-vibration behavior of a single layer

of PZT-4 is examined using 1) variable-w theory with two layers, 2) u-v-_5 approximations

using two layers and w-approximation using a single layer, and 3) the _x_tct solution. The

results of the first 6 frequencies are shown in Table 19. Clearly, the independent-w theory

yields a higher fundamental mode, but is indicative of the ralatively good accuracy with

a small number of w-layers. Many of the higher modes (pure extension and those with

no coupling) exactly capture the frequency of the plate.

This theory was just completed and debugged code produced at the end of this study.

The full power and versatility of this theory and element await full exploration.
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4 10 50a/h
N Open

1 110,189

2 102,599

4 99,454

8 98,456

16 98,311

32 98,251

64 98,236

Exact [[ 98,232

Closed Open Closed

104,105 848.586 8-18.094

100,294 773.651 773.458

97,915 753.622 753.525

97,186 748.576 748.452

96,994 747.299 747.177

96,946 746.979 746.859

96,934 746.898 746.779

96,930

Open Closed

20,485.7 20,217.4

18,761.5 18,656.2

18,255.4 18,180.8

18,122.4 18,055.7

18,088.9 18,024.0

18,080.6 18,016.0

18,078.4 18,014.0

18,077.8 18,0 3.4II746.873746.752

Table 13 Convergence of fundamental frequency for single-layer of PZT-4.

Mode

a/h=4: C .... 1 2 5 5

N=4

N=8

N=16

N=32

N=64

Exact

a/h=4:0

N-4

N=8

N=16

N=32

N =64

Exact

74.7732

72.8253

72.3376

72.2152

72.1846

72.1744

74.8023

72.8451

72.3554

72.2325

72.2017

72.1915

197.353

195.402

194.920

194.800

194.770

194.760

197.483

195.525

195.042

194.921

194.891

194.881

447.653

432.976

426.810

425.160

424.742

424.602

447.733

433.049

426.875

425.223

424.801

424.664

549.479

534.030

530.343

529.432

529.205

529.129

550.079

534.493

530.769

529.849

529.620

529.543

a/h=50: C 1 2 5 6

0.637707

0.634494

0.633687

0.633485

0.633434

0.633417

379.322

359.391

354.642

353.469

353.177

353.079

16.4328

16.4315

16.4312

16.4311

16.4311

3 4

329.301 342.387

311.843 338.628

307.606 337.504

306.558 337.207

306.296 337.132

306.209 337.107

3 4

329.691 342.481

312.190 338.718

307.940 337.593

306.888 337.296

306.626 337.221

306.539 337.196

3 4

28.5365 292.035

28.5356 273.945

28.5353 269.563

28.5353 268.479

28.5353 268.208

28.5352 268.118

3 4

28.5566 295.866

28.5556 277.248

28.5554 272.717

28.5554 271.595

28.5553 271.315

28.5553 271.222

N=4

N=8

N=16

N=32

N=64

16.4311Exact

400.300

379.362

371.982

370.048

359.559369.396

a/h=50: O 1 2 5 6

16.4426

16.4413

16.4410

16.4409

16.4409

390.811

369.149

363.958

362.674

362.354

362.248

0.637786

0.634566

0.633757

0.633555

0.633506

0.633487

N=4

N=8

N=16

N=32

N =64

Exact 16.4409

400.301

379.363

371.982

370.048

369.560

369.396

Table 14 Convergence of frequencies for 3-ply piezoelectric lami,,ate.
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Mode
a/h=4: C 1 2 5 6

N=5
N=10
N=20
N=32
N=64
Exact

57.2531
57.1249
57.0875
57.0855
57.0773
57.0745

194.840
192.190
191.524
191.350
191.313
191.301

368.461

364.2t8

362.939

362.592

362.516

362.522

389.525

383.352

381.629

381.171

381.072

381.049

a/h=4: O 1 2 5 6
389[53457.2707

57.1403

57.1023

57.1005

57.0921

N=5

N=10

N=20

N=32

N=64

Exact

368.505

364.252

362.971

362.623

362.548

362.52257.0893

194.843

192.192

191.526

191.353

191.316

191.304

383.364

381.641

381.18,:I

381.084

381.049

a/h=50: C 1 2 5 6

214.690N=5

N=10

N=20

N=32

N=64

0.619025

0.618348

0.618175

0.618156

0.618127

211.596

210.791

210.582

210.538

3 4

255.648 282.168

252.024 276.853

251.085 275.425

250.845 275.040

250.786 274.969

250.769 274.941

3 4

255.648 282.168

252.025 276.853

251.086 275.425

250.845 275.040

250.786 274.969

250.770 274.941

3 4

21.4947 212.811

21.4933 210.561

21.4929 209.925

21.4928 209.754

21.4928 209.718

21.4928 209.704

3 4

21.4949 212.827

21.4935 210.568

21.4931 209.929

21.4930 209.758

21.4930 209.721

21.4930 209.707

210.522

15.6835

15.6820

15.6817

15.6816

15.6816

15.68160.618118Exact

384.953

379.943

378.575

37S.207

378.132

} .s.lo.i
,h

a/h=50:0 1 2 5 6

N=5

N=10

N=20

N=32

N=64

15.6835

15.6821

15.6817

15.6816

15.6816

214.736

211.645

210.841

210.632

210.589

0.619038

0.618351

0.618179

0.618160

0.618141

384.953

379.944

378.575

378,207

378.133

Exact 0.618120 15.6816 210.573 378.105

Table 15 Convergence of frequencies for 5-ply hybrid laminate.
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I II
a/h=1 3' a 7 a

1 713,061 -1.744e+9 724,602 -1.675e+9

2 777,021 0 777,021 0

3 889,902 (-1.515e÷Ii) 912,912 (-1.498e+9)

4 925,431 0 925,431 0

5 1,243,819 -1.534e+9. 1,270.594 0

6 1,270,594 0 1.293,504 (-2.57e+10)

a/h=4 3' a 3' a

1 96,929.9 -4.87e+8 98,231.7 -7.78e+8

2 194,255 0 194,255 0

3 327,663 (2.276e+7) 355,110 (4.57e+9)

4 538,885 0 538,885 0

5 609,186 -1.08e+8 690,767 2.55e+9

6 958,922 (-2.66e+8) 960,103 (-3.48e+8)

a/h=10 3' a 3 a

1 18,013.4 -1.78e+8 18,077.8 -3.40e+8

2 77,702.1 0 77,702.1 0

3 133,695 (1.27e+6) 145,221 (1.74e+S)

4 508,625 0 508,625 0

5 522,320 -4.87e+7 604,752 6.26e+9

6 988,021 (-1.76e+S) 990,953 (-2.88e+8)

a/h=50 3' a 3' a

1 746.752 -3.48e÷7 746.873 -7.78e÷8

2 15,540.4 0 15,540.4 0

3 26,828.0 (9.94e+3) 29,153.3 (3.48e+7)

4 502,895 0 502,895 0

5 503,469 -1.01e+7 586,240 3.10,:,+ t0

6 1,004,344 (-4.56e+7) 1,004,612 (-7.21e+7)

Table 16. Frequency parameters for single-ply piezoelectric layer for differing electric

surface conditions.
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II II
Mode

1

2

3

4

5

6

Frequency parameter 7

a/h=4 a/h=50

I II I II

72,174.4 72,191.5 633.417 633.487

194,760 194,881 16,431.1 16,440.9

216,505 216,505 17,320.4 17,320.4

306,209 306,539 28,535.2 28,555.3

337,107 3'37,196 268,118 271,222

424,602 424,664 353,079 362,248

17a. [1/2/2/1] lamination scheme.

II II
Mode

1

2

3

4

5

6

Frequency parameter 7

a/h=4 a/h=50

I II I II

58,248.7 58,354.0 725.219 725.241

192,408 192,436 16,430.2 16,438.8

271,757 271,758 28,535:7

329,584 329,593 159,732

363,048 364,072 226,218

407,771406,665 353,386

28,555.1

159,$65

226,643

363,810

17b. [2/1/1/2] lamination scheme.

Table 17. Frequency parameters for laminate with dissimilar piezoelectric layers.
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Mode
1
2
3
4
5
6

Frequency parameter -_

a/h--4 a/h---50

I II I II

57,074.5 57,089.3 618.118 618.120

191,301 191,304 15,681.6 15,681.6

250,769 250,770 21,492.8 21,493.0

274,941 274,941 209,704 209,707

362,492 362,522 210,522 210,573

381,036 381,049 378,104 378,105

Table 18. Frequency parameters for 5-ply elastic/piezoelectric htminate.

fl II
Mode

1

2

3

4

5

6

Frequency parameter 3'

Variable w Linear w Exact

100:293.4 104145.2 96,929.9

194,255 194,255 194,255

328,560 328,560 327,663

587.312 587,312 508,625

673.851 706,727 522,320

1,125,404 1,125,404 988,021

Table 19. Comparison of frequencies for variable w, linear w, and exact, single layer

PZT-4.
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8. SUMMARY AND FUTURE WORK

Developed Algorithms

The following algorithms havebeendevelopedas part of this researchto aid in the

simulation of active tip clearancecontrol usingadaptive composites:

• Semi-analyticsolutions using variable, constant, and independentapproximations

for out-of-plane transverse displacements for laminated piezoelectric plates.

• Finite element approximations using constant and variable variations. Implementa-

tion of independent-w theory is straightforward. Both static and dynamic problems

can be modeled.

• Exact solutions of simply-supported laminated piezoelectric plates: static and dy-

namic behavior.

• Discrete-layer shell elements for arbitrary geometry.

Deiiverables to NASA-Lewis are the source code for the plate and beam elements, and

have been delivered to NASA via internet. All other source codes for the semi-analytic

and exact solutions is also available.

Summary of Results

Inspection of the results included here and as part of this study, the primary thrusts

of the working algorithms are:

• Excellent accuracy for variable-w theory and promising results f0r the independent-

w theory.

• As currently formulated, the constant-w theory is not suitable for coupled problems

in electroelasticity because of the inability to model transverse normal strain. For

elastic problems, however, this methodology yields very acceptable results.

• Exact solutions developed will provide extremely useful benchmarks for the enclosed

theories and those developed by others.
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• Flat-plate results for plate elementare good and encouraging.The application to

an assemlageof flat plates to approximatea curved surfacehasnot beenmade,but

canbe with the inclusionof developedtransformation matrices.

• Elements developedhere can be incorporated into general purposefinite element

codeto simulatethe control processfor a wide array of problems.

• Resultsof shellelementarepromising,but this application hasnot beenextensively

testedbecauseof lackof comparativesolutionsavailablein literature and elsewhere.

Future Work

The potential applicationsof the elements-developedhere are numerous.Beforethis

occurs, additional testing of both the plate and shell elementswould be prudent and

is necessaryfor the shell element. What follows are suggestionsfor future work by the

presentinvestigatorsor others:

• Completeimplementationand testing of plate elementwith independent-wtheory.

• Useof rotatedplate elementsascollection of flat plates to model curvedshell.

• Developmentof exact solution for laminated piezoelectriccylindrical shell for pur-

posesof benchmarkinggeneralshellelement.

• Further testingof shellelementand comparisonof eachdiscrete-layertheory.

• Application to active tip clearancecontrol and other problems requiring adaptive

compositelaminates.
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1"!

tail: positive poling
field

Figure 1: Coordinate axes for typical piezoelectric latyeL'.

_X, embedded .,_

_ piezoelectriclayer_

Figure 2: Laminated piezoelectric plate and possible deforrnation.

9:3



Non-layer-wlse description for either u, v, w or _.

_ 'pseudo-layer'
" for calculation

real layers

±

Figure 3: Description of pseudo-layer withirl laminate g_,_Jil,_.l.vS'.

Z

Curvilinear coordinates i

Local system Global system

Figure 4: Curvilinear coordinates in a general shell.
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Layer-wise description for u, v and _.

Constant w through the thickness.

Layer-wlse descriptionfor u, v, w and _b.

Figure 5: Through-thickness approximations for discrete-layer theories.
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layer-wise description for u, v, and _.

/

non-layer-wise description for

some

Figure 6: Assumed form for independent-w approxinl;_l i_,n.

[Kn] =

j=l ---_ j=n

.l._-n
• -=I a-=1

b=l -'''''_ b=m

Figure 7: Structure of sub-matrices.
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nodal points of dement

There are 32 nodes requiredfor
this 3-layer shefl.

Figure 8: Discrete-layer element [or general shells.

Figure 9: Continuity requirements at through-thickness locations.
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one curvl_uear coordinate
system k needed

Figure 10: Shell element with different layers/coordiuate systems.
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,,,, I II I

V"
E_=,.ujC_',,_')_R¢):£-unctiona ¢:" u,.(_,.)

I . u,((,,p)= E'-.-,ux.,_.C(,,y)

,,(,_,,i,¢)= _.=__,,,-_=,u'j.,_.((,,0¢,J(¢)

Figure 11: Form of approximations for generaL shell elelllent,.
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UjtN÷I), V j(N÷I), Wj(N÷I), 1_ j(N÷I} __

Ujm, V jn, WiN , @ iN __

Uj+ ,Vp ,W+:+ , _ __

Uj_ ,V j2 ,Wj2 , +j2 __

Uj! ,Vjl ,Wjl , _:_Jt __

LAYER 2 )

LAYER I ]

Figure 1'2_: Geometry and layer numbering.

W varying linearly through thickne.s_

Uj(N+I}, V j(N+O, _ j(N+O

UjN ,VjN, _jm

Wj
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Figure 13: Geometry and layer numbering. W constant through thickness
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Figure 14: local and global coordinates.
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Figure 15: Geometry of Rectangular Plate
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Figure 16: Bot_dary Conditions for the Quarter plat<:
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Figure 17: Geometry of PVDF Square Plate
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Figure 18: Geometry of PVDF/GRAPHITE/EPOXY/PVDF Square Plate
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Figure 19: Displacement in x-directiou
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Figure 20: Displacement in y-direction
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Figure 21: Displacement in z-direction
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Figure 22: Normal Stress Distribu¢ion on x-direction
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Figure 23: Normal Stress Distributioa on y-directi_,ll
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Figure 24: In-Plane Stress Distribution
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Figure 25: Out-plane Stress Distributioll
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Figure 26: Out-plane Stress Distribution
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Figure 27: Displacement in x-direction,applied load,a/h = l tJ. PVDF
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Figure 28: Displacement in y-direction with applied load,a/h = tO,PVDF
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Figure 29: Displacement in z-direction,applied load,a/h = IU.PVDI "_
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Figure 30: Potential Distribution,applied load,a/h = 10,PVDF
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Figure 31: Normal stress distribution on x-direction,apl_li¢-d Io_,l.,,/h = 10,1"\"D [:'
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Figure 32: Normal stress distribution on y-direction,applied load,,,,/h = 10,PVDF
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Figure 33: Normal stress distribution on z-direction,applied load.,//_. = L0,PVDF
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Figure 34: In-plane stress distribution,applied load,a/h = I t).l ) \."D F
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Figure 35: Out-plane stress distribution,applied load,a/h = 10,PVDF
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Figure 36: Out-plane stress distribution,applied Ioad,a/h = ltl,PVDF
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Figure 37: Electric displacement distribution,applied load,a/h = 10,PVDF
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Figure 38: Displacement in x-direction,applied potential,a/h = Lu,PVDI:
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Figure 39" Displacement in y-direction,applied potential,a/h = 10,PVDF
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Figure 40: Displacement in z-direction,applied potential,a/h = t0,PVDI;'
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Figure 41: Potential distribution,applied potential,a/h = 10.[)\.;DF
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Figure 42: Normal stress distribution on x-direction,applied potential

a/h = 10,PVDF
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Figure 43: Normal stress distributiou on y-direction,al31)li(-.'d l,,,t.clitial

a/h = 10,PVDF
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Figure 44: Normal stress distribution on z-direction,applied potential

a/h = 10,PVDF
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Figure 45: In-plane stress distribution,applied potential,eL/I, = 10,1)VDF
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Figure 46: Out-plane stress distribution,applied potential,_L//t = I0,PVDF
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Figure 47: Out-plane stress distribution,applied poteatial,a//_ = IO,PVDF
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Figure 48: Electric displacement distribution,applied potential,a/b = 10,PVDF
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Figure 49: Displacement in x-direction,applied load,a/h = ll),I'ZT4
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Figure 50: Displacement in z-direction,applied load,a/h = I(J,PZT4

119



.... bGsG-12-r, v,o_ol_o v

.... 1.6_-12-1 e, ooze0, v

!

Lu o.m 8.n e.m Lee o.88 e.m e.w e.m o.m o.Je
Po_,.W.LoL O_et.,-_.bvt.A,Ono (_

Figure 51: Potential distribution,applied load,a/h = 10,1'ZT4
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Figure 52: Normal stress distribution oil x-direction,applied loa, d,./h = I0,PZT4
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Figure 53: Normal stress distribution on z-direction,applied Ioa,l.,,.//* = L0.PZT4

.... _|2-re _,o,-LobLe v

.... L.8_-t2-r, conot._v, v

•.LO -4'.,I 4 q _ 1.1 ILl |JIO 3.0 I.Q tt |
T,-m,,,w'_ "J,.m- Sty.., '_x_

Figure 54: In-plane stress distribution,applied load,a/h = [O.I)ZT 4
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Figure 55: Out-plane stress distribution,applied load,a/h = L0,1)Z'I'4
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Figure 56: Electric displacement distribution,applied load.,J/I, = L0.PZT4
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Figure 57: Displacement in x-direction,applied potential,a/l_ = 10,PZT,1
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Figure 58: Displacement in z-direction,applied potential,a/h = 10,PZT4
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Figure 59: Potential distribution,applied potential,a/h = L0,PZT4
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Figure 60: Normal stress distribution on x-direction,applied potential

a/h = 10,PZT4
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Figure 61: Normal stress distribution on z-direction,applied potet_tb_l

a/h = 10,PZT4
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Figure 62: In-plane stress distribution,applied potential,a/h = I0,PZT4
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Figure 63: Out-plane stress distribution,applied potential,a/h = L0,PZT4
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Figure 64: Electric displacement distribution,applied potentiai,a/h = L0,PZ'.['-I
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Figure 65: u-displacement for single layer PZT-4 (load).
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Figure 66: w-displacement for single layer" PZT-4 (load).
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Figure 67: Potential for single layer PZT-4 (load).

Figure 68: In-plane normal stress for single layer PZT-4 (l_,a,I).
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Figure 69: Out-of-plane normal stress for single layer PZ'I'-:I tload).
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Figure 70: Out-of-plane shear stress for single layer PZT-4 (load).
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Figure 71: In-plane shear stress for single layer I'Z'I--I (l_md).

Figure 72: Normal electric displacement for single la.yer PZT-4 (load).
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Figure 73: u-displacement for single layer PZT-4 (pot(Jntial).

Figure 74: w-displacement for single layer PZT-4 (potentbd).
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Figure 75: Potential for single layer PZT-4 (pote:Ltial).
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Figure 76: In-plane normal stress for single layer PZ'I'-+I t iJ,_t,'t,t.ial).
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Figure 77: Out-of-plane normal stress for single layer PZT-4 (p,,Icnt, ial).
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Figure 78: Out-of-plane shear stress for single layer PZ'I'--I (I.,ot,'nt.ial) -
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Figure 79: In-plane shear stress for single layer PZT-4 (l_,,t,m!ial).
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Figllre 80: Normal electric displacement for single laver PZT-I (i,ot,',ttia.I).
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Figure 81: u-displacement for 5-ply, applied load.
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Figure 82: v-displacement for 5-ply, applied load.
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Figure 83: w-displacement for 5-ply, applied load.

Figure 84: Potential for 5-ply, applied load.
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Figure 85: Normal (x) stress, 5-ply, applied load
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Figure 86: Normal (y) stress, 5-ply, applied load
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Figure 87: Normal (z) stress, 5-ply, applied load
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Figure 88: Shear (xz) stress, 5-ply, applied load.
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Figure 89: Shear (yz) stress, 5-ply, applied load
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Figure 90: Shear (xy) stress, 5-ply, applied load
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Figure 91: Normal electric displacement, 5-l)ly. applic:d l,,a,I.
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Figure 92: u-displacement for 5-ply, applied potential.
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Figure 93: v-displacement for 5-ply, applied potelltial.
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Figure 94: w-displacement for 5-ply, a.pplied potetltial.
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Figure 95: Potential for 5-ply, applied potentie_l.

Figure 96: Normal (x) stress, 5-ply, applied potential.
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Figure 97: Normal (y) stress, 5-ply, applied potential.
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Figure 98: Normal (z) stress, 5-ply, applied potelllial.
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Figure 99: Shear (xz) stress, 5-ply, applied potential.
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Figure 100: Shear (yz) stress, 5-ply, applied pote,,tial.
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Figure 101: Shear (xy) stress, 5-ply, applied potential
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Figure 102: Normal electric displacement, 5-ply, applied pol(,ntial

145



\
\
\

Figure 103: Mode 1, 3-ply, a/h=4.
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Figure 104: Mode 1, 3-ply, a/h=50.
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Figure 105: Mode 2, 3-ply, a/h=4
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Figure 106: lVlode 2, 3-ply, a/h=50.
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Figure 107: Mode 3, 3-ply, a/h=-t,
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Figure 108: Mode 3, 3-ply, a/h=50.
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F_ure 109: Mode 4, 3-ply, a./h=4.

Figure llO: Mode 4: 3-ply, a/h=50-
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Figure 111: Mode 5, 3-ply, a/h=4.

q
m"

m

d"

g

._-.

h

e
O'

/
IN

-'- /
M _.1'-
d" f.1"

_.. • f.t"

of"
_r

°'°°°'°_'°°'"°"°'°.1 J°}

_,_° °'°"O,oo°o°oo_

/
/

,o.,,.,,.,°°P

! i | l - I

L.50 0.2S 0.50 0.7'_ 1.50
NormaL voLue

Figure 112: Mode 5, 3-ply, a/h=50.

150



\

I.nn

Figure 113: Mode 6, a-ply, a./h=4.
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APPENDIX

Property 1 2 3

E_ (GPa) 237.0 81.3 132.38

E2 23.2 81.3 10.756

E3 10.5 64.5 10.756

vn 0.154 0.329 0.24

v13 0.178 0.432 0.24

v23 0.177 0.432 0.49

G44 2.15 25.6 3.606

G55 4.4 25.6 5.6537

G66 6.43 30.6 5.6537

e24 (elm 2) -0.01 12.72 0

e31 -0.13 -5.20 0

e32 -0.14 -5.20 0

e33 -0.28 15.08 0

_-_ 12.5 1475 3.5
cO

_-_ 11.98 1475 3.0

_-_ 11.98 1300 3.0
tN

Table A1. Elastic, piezoelectric, and dielectric properties of piezoelectric materials.
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Definitions of coeeficientsusedin exact solution:

A = -Cs5 (744 C3z ¢33 - Cs5 C44 e_z (291)

B All C44 e:_ + An C44 Ca3 eee 2 Aa3 C44 A14 e33 + Css 2= - A_4C:n - C.5.:,C,l,l C33 A44 -(292)

A23C44 _33 q- 2 C55 C44 A34 e33 q- C5,5 A2_ e_3 q- Cs5 C44 A33 _33 + C"._ .4._ C_ e33 +

A_4C44 C33 - 2 Css A23 A24 e.,_ - Css A_3ez3

C = -2 A12 A23 Ax3 e33 - AI_ A22 ea_3- C55 A_3A44 - Css A_4A33 + C'55 C4.t A33 A.t4 -ff293)

2 2
A12e33 2 Cs5 A22 A34 e33, - Css C44 A_4 + 2 Css A23 A24 A34 -Ail A22 C_ _33 -

Au C,t4 A_ _33 -Jl- Au 644 C33 A44 + 655 A22 633 A44 -:655 A22 A33 E3.3 - A_3C-I,I A44 +

A_2C33 _83 + 2 A12 A24 A14 C33 - 2 A_2 A;4,4_3 e33 -- Air A'_4C33 - 2 ,-ll_, .-le:_ ,:Ii4 e33 +

2 All A23 A24 e33 -Jr A_3A_4 q- 2 A13 C44 A14 A34 - 2 All Ca4 A34 e33 q- 2 AI:_, ,422 AI,! e33 +

z z A_3A22 _533A14A23 -]- -t- All A2_3_33 2 A13 A24 AI4 A23 2 -- A14C44-- -- A14A22 (_"3_ A33

D = -A_ C44 A_ A4,_ - A_ A_2 C_ A44 + 2 An A2_ A34 ea3 + ,4_1 A_ ,4_:_ t:_:_+ C_ A_2 A_4 -(29-1)

Css A22 A33 A44 -Jr A_3A2_ A44 - 2 Ax_ A24 A14 A33 + 2 Ax2 A_4 A_3 A34 + "2A_2 A23 A_4 A34 -

2 _ A e ' A_4 A332 A_2 A23 A13 A44 - 2 Ax2A34 e33 -- A12A33 (33 + 12( 3:" A,14 -'1- All

2 au A23 A24 A34 +All A_aA44 + Au C44 A_4 + A_x.A2._ A_ - 2 A_3 A22 A_. A3_

2 2 _E = A_ A2_Ae_ A44 + A_A_4 A_ A_2 A24 A_A_ A44 (295)

Dx = C,_,_e_3 + C_, C33 e_ (296)

D_ = -C44 A33 ca3 + C44 C33 A44 - 2 C44 A34 e33 -{"2 A_3 A2a e3:_ -

,422 e_3 q- A_3 33 - A22 C_ e_ -

(297)
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D3 -" A22 A33 e33 - A22 C33 A44 - 2 A23 A24 A34 + 2 A22 A34 e33 4-

A_3A44 - C44 A33 A44 -_- A24A33 -Jff C44 A24

(298)

D4 -- A22 A_ A44 - A22 A_4 (299)

Ill = A12(C33_ + oh) -(A_3_ +-A_,c3_)AI_+ (-A2__ + A..,C_)A1, (300)

./'12 = -A12 (A33 e33 - C_ A,, + 2 A34 e_) - (A23 A4, - A2, A34) AI_ + (.4._j ,43, - A_4 A33),4_l_3{}1 )

(3o2)

f21 = -C,4 E33 A13 - C44 e_ ,414 (303)

f22 = (A22e_-C4, A,,+ A_4)A13- A12 (A23e_ + A2, e3.3)+

(A22 ea3 + C44 A34 - A23 A2,) .':11.,

(304)

f23 = -A12 (A23 m44 - A24 A34) - A22 A34 A14 -}" A22 m,4 AI3 (305)

f31 = -A13 C44 e:_ + A14 C44 C33 (306)

f32 : A13 (A22 e33 -[- C44 A34 - A23 A24) --[- A12 (-A23 e33 q- A24 C33) -b

Ax, (-A22 C:_ - C,, A:_:_+ A:_:_)

(307)

f_ = A12 (A23 A_ - A24 Aa3) + A14 A22 A33 - A13 A2_ A_,l (3os)
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